-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter2.tex
1787 lines (1388 loc) · 77.6 KB
/
Cox_Galois_Chapter2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\author{Richard Ganaye}
\refstepcounter{section}
\begin{document}
\section{Chapter 2}
\subsection{POLYNOMIALS OF SEVERAL VARIABLES}
\paragraph{Ex. 2.1.1}
{\it Show that $\langle x, y \rangle = \{xg+yh\ \vert\ g,h \in F[x,y]\} \subset F[x,y]$ is not a principal ideal in $F[x,y]$.
}
\begin{proof}
We show first that $\langle x,y \rangle \neq F[x,y]$. If not, $1 \in \langle x,y \rangle$, so
$$1 = x u + y v,\ u,v \in F[x,y] .$$
If we evaluate this identity at $x =0,y=0$, we obtain $1=0$, which is a contradiction, thus
$$\langle x,y \rangle \neq F[x,y].$$
If $\langle x,y \rangle$ was a principal ideal, generated by $p \in F[x,y]$, then $\langle x,y \rangle = \langle p \rangle$, and
$$x = pq, y = pr, \quad q,r \in F[x,y].$$
$\deg(p)+ \deg(q) = \deg(x) = 1$, so $\deg(p)\leq 1$, and $p\neq 0$.
If $\deg(p)=0$, then $p =\lambda \in F^*$, and $\langle x,y \rangle = \langle \lambda \rangle = F[x,y]$, but we have proved that this is impossible.
Thus $\deg(p)=1$, so $p = \alpha x + \beta y + \gamma,\ \alpha,\beta,\gamma \in F$, and $\deg(q) = \deg(r)=0$, so $q = \lambda \in F^*, r = \mu \in F^*$:
\begin{align*}
x &= \lambda (\alpha x + \beta y + \gamma),\\
y &= \mu (\alpha x + \beta y + \gamma).\\
\end{align*}
This implies $\lambda \beta = 0$ and $\mu \alpha = 0$.
As $\lambda \neq 0, \mu \neq 0$, $\alpha = \beta = 0$, whitch is in contradiction with $\deg(p) = 1$.
We have proved that $\langle x,y \rangle$ is not a principal ideal, and thus $F[x,y]$ is not a principal ideal domain.
\end{proof}
\paragraph{Ex. 2.1.2}
{\it Express each the following polynomials as a polynomial in $y$ with coefficients that are polynomials in the remaining variables.
\begin{enumerate}
\item[(a)] $x^2y + 3y^2 -xy^2 + 3x +xy^2 +7x^2y^2$.
\item[(b)] $(y-(x_1+x_2))(y-(x_1+x_3))(y-(x_2+x_1))$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
\begin{align*}
p &= x^2 y + 3 y^2 - x y^2 + 3x + x y^2 + 7 x^3 y^3\\
&= ( 7 x^3) y^3 + 3 y^2 + x^2 y + 3x.
\end{align*}
\item[(b)]
Let
\begin{align*}
q &= (y -(x_1+x_2))(y-(x_1+x_3))(y-(x_2+x_3)).\\
\end{align*}
Consider $p = (x+x_1)(x+x_2)(x+x_3) = x^3+ \sigma_1x^2+\sigma_2 x +\sigma_3$.
Then
\begin{align*}
q &= (y - \sigma_1 + x_3)(y-\sigma_1+x_2)(y - \sigma_1 + x_1)\\
&=p(y-\sigma_1)\\
&=(y-\sigma_1)^3 + \sigma_1 (y-\sigma_1)^2 + \sigma_2(y-\sigma_1) + \sigma_3\\
&=(y^3 -3 \sigma_1 y^2 + 3 \sigma_1^2 y - \sigma_1^3) + (\sigma_1y^2 - 2 \sigma_1^2y + \sigma_1^3)+ (\sigma_2 y - \sigma_1 \sigma_2) + \sigma_3\\
&=y^3 - 2 \sigma_1 y^2 + (\sigma_1^2+\sigma_2)y + (\sigma_3 - \sigma_1\sigma_2).
\end{align*}
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.1.3}
{\it Given positive integers $n$ and $r$ with $1\leq r \leq n$, let $\binom{n}{r}$ be the number of ways of choosing $r$ elements from a set with $n$ elements. Recall that $\binom{n}{r} = \frac{n!}{r!(n-r)!}$.
\begin{enumerate}
\item[(a)] Show that the polynomial $\sigma_r$ is a sum of $\binom{n}{r}$ terms.
\item[(b)] Show that $\sigma_r(-\alpha,\ldots,-\alpha) = (-1)^r \binom{n}{r} \alpha^r$.
\item[(c)] Let $f = (x+\alpha)^n$. Use part (b) and Corollary 2.1.5 to prove that
$$(x+\alpha)^n = \sum_{r=0}^n \binom{n}{r} \alpha^r x^{n-r},$$
where $\binom{n}{0}=1$. This shows that the binomial theorem follows from Corollary 2.1.5.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
The number of terms in
\begin{align}
\sigma_r = \sum_{1 \leq i_1 < \cdots <i_r\leq n}x_{i_1}x_{i_2}\cdots x_{i_r} \label{eq2.1.3:1}
\end{align}
is the number of strictly increasing sequences $(i_1,i_2,\cdots,i_r)$ in the integer interval $\gcro1,n\dcro$. It is equal to the number of subsets with $r$ elements in the set $\gcro1,n\dcro$ with $n$ elements. Thus it is equal to $\binom{n}{r}$.
\item[(b)] Evaluating \eqref{eq2.1.3:1} with $x_1=x_2 = x_n = -\alpha$, we obtain
\begin{align*}
\sigma_r (-\alpha, \cdots,-\alpha)&= \sum_{1 \leq i_1 < \cdots <i_r\leq n}(-\alpha)^r\\
&=(-1)^r \binom{n}{r} \alpha^r.
\end{align*}
\item[(c)]
By Corollary 2.1.5, with the substitution $x_1 = -\alpha, x_2 = -\alpha, \cdots, x_n = - \alpha$,
$$f = (x+\alpha)^n = x^n +a_1 x^{n-1}+\cdots +a_n,$$ where
\begin{align*}
a_r &= (-1)^r \sigma_r(-\alpha,\cdots,-\alpha)\\
&=\binom{n}{r} \alpha^r.
\end{align*}
Consequently,
$$(x+ \alpha)^n = \sum_{i=1}^n \binom{n}{r} \alpha^r x^{n-r}.$$
With the substitution $x = \beta , \ \beta \in F$, we obtain the binomial formula
$$( \alpha+ \beta)^n = \sum_{i=1}^n \binom{n}{r} \alpha^r \beta^{n-r}.$$
\end{enumerate}
\end{proof}
\subsection{SYMMETRIC POLYNOMIALS}
\paragraph{Ex. 2.2.1}
{\it Show that the leading term of $\sigma_r$ is $x_1x_2\cdots x_r$.
}
\begin{proof}
We show that the leading term of $\sigma_r$ for the graded lexicographic order is $x_1x_2\cdots x_n$.
Let $x_{i_1}x_{i_2}\cdots x_{i_r} (i_1 < i_2 < \cdots < i_r)$ any term of $\sigma_r$, distinct of $x_1x_2\cdots x_r$. We must show that $x_1x_2\cdots x_r > x_{i_1}x_{i_2}\cdots x_{i_r}$.
If $i_1>1$, then $x_1$ as no occurence in $x_{i_1}x_{i_2}\cdots x_{i_r}$. Its exponent is 0 in the right monomial, and $1$ in the left monomial, so $$x_1x_2\cdots x_r > x_{i_1}x_{i_2}\cdots x_{i_r},$$ and the proof is done in this case.
If $i_1 = 1$, let $j\ (1<j < n)$ the first subscript such that $i_j\neq j$. Then $$i_1=1, i_2=2,\cdots ,i_{j-1} = j-1, i_j\neq j.$$ Such a subscript exists, otherwise $x_1x_2\cdots x_r = x_{i_1}x_{i_2}\cdots x_{i_r}$. As $i_{j} > i_{j-1} = j-1$, $i_j \geq j$, and as $i_j\neq j, i_j > j$, so the exponent of $x_j$ is $0$ in the right monomial.
Therefore
$$x_1x_2\cdots x_{j-1}x_j \cdots x_r > x_1x_2 \cdots x_{j-1} x_{i_j} \cdots x_{i_r} = x_{i_1}x_{i_2}\cdots x_{i_r}.$$
So the leading term of $\sigma_r$ is $x_1x_2\cdots x_r$.
\end{proof}
\paragraph{Ex. 2.2.2}
{\it This exercise will study the order relation defined in (2.5). Given an exponent vector $\alpha = (a_1,\ldots,a_n)$, where each $a_i \geq 0$ is an integer, let $x^\alpha$ denote the monomial
$$x^\alpha = x_1^{a_1}\cdots x_n^{a_n}.$$
If $\alpha$ and $\beta$ are exponent vectors, note that $x^{\alpha} x^{\beta} = x^{\alpha+\beta}$. Also, the leading term of a nonzero polynomial $f \in F[x_1,\ldots,x_n]$ will be denoted {\normalfont \scriptsize LT}$(f)$.
\begin{enumerate}
\item[(a)] Suppose that $x^\alpha> x^\beta$, and let $x^\gamma$ be any monomial. Prove that $x^{\alpha+\gamma} > x^{\beta+\gamma}$.
\item[(b)] Suppose that $x^\alpha > x^\beta$ and $x^\gamma > x^\delta$. Prove that $x^{\alpha + \gamma} > x^{\beta + \delta}$.
\item[(c)] Let $f,g \in F(x_1,\ldots,x_n]$ be nonzero. Prove that {\normalfont \scriptsize LT}$(fg) =$ {\normalfont \scriptsize LT}$(f)${\normalfont \scriptsize LT}$(g)$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $\alpha = (a_1,a_2,\cdots, a_n),\beta = (b_1,b_2,\cdots,b_n),\gamma = (c_1,c_2,\cdots, c_n)$ and suppose that $x^{\alpha}>x^{\beta}$.
Then $a_1+a_2+\cdots+a_n \geq b_1+b_2+\cdots+b_n$, otherwise $x^{\alpha}<x^{\beta}$.
If $a_1+a_2+\cdots+a_n > b_1+b_2+\cdots+b_n$, then $(a_1+c_1)+ \cdots+(a_n+c_n) > (b_1 + c_1)+\cdots + (a_n+c_n)$, thus $x^{\alpha+\gamma}>x^{\beta+\gamma}$.
We suppose now that $a_1+a_2+\cdots+a_n = b_1+b_2+\cdots+b_n$.
By definition of the graded lexicographical order, $a_1 \geq b_1$, otherwise $x^{\alpha}<x^{\beta}$.
If $a_1>b_1$, then $a_1+c_1>b_1+c_1$, which implies $x^{\alpha+\gamma}>x^{\beta+\gamma}$.
It remains the case where $a_1=b_1$.
Let $j\ (j<n)$ the first subscript such that $a_i \neq b_j$ : $$a_1=b_1,a_2=b_2,\cdots,a_{j-1}=b_{j-1}, a_j\neq b_j.$$
As $x^{\alpha}>x^{\beta}$, such a subscript exists, otherwise $x^{\alpha}=x^{\beta}$.
If $a_j < b_j$, we would have $x^{\alpha}<x^{\beta}$, which is false by hypothesis, so $a_j > b_j$.
Then $a_1 +c_1 = b_1+c_1, \cdots, a_{j-1}+c_{j-1} = b_{j-1} + c_{j-1}$ and $a_j + c_j > b_j + c_j$, so
$$x^{\alpha+\gamma}>x^{\beta+\gamma}.$$
Conclusion : $$x^{\alpha} > x^{\beta} \Rightarrow x^{\alpha+\gamma}>x^{\beta+\gamma}.$$
\item[(b)]
If $x^{\alpha}> x^{\beta}$ and $x^{\gamma} > x^{\delta}$, then by (a),
$$x^{\alpha+\gamma}> x^{\beta+\gamma},$$
$$x^{\beta+\gamma}>x^{\beta+\delta}.$$
So, by transitivity
$$x^{\alpha+\gamma}>x^{\beta+\delta}.$$
\item[(c)]
Let $c x^{\alpha} = $ { \scriptsize LT}$(f), d x^{\beta} = $ { \scriptsize LT}$(g)$.
By definition of the leading term, for every term $ux^\gamma$ in $f$, distinct of {\scriptsize LT}$(f)$,
\begin{align*}
x^{\alpha}> x^{\gamma},
\end{align*}
and for every term $vx^\delta$ in $g$, distinct of {\scriptsize LT}$(g)$,
\begin{align*}
x^{\beta} > x^{\delta}.
\end{align*}
Every monomial in $fg$ distinct of $cd x^{\alpha+\beta}$ is a sum of terms of the form $gx^{\gamma+ \delta}$, where $\beta,\gamma$ verify $\alpha \geq \gamma, \beta > \delta$, or $\alpha>\gamma, \beta \geq \delta$. In both cases, by (a) and (b),
$$x^{\alpha+\beta}>x^{\gamma+\delta}.$$
Therefore $cd x^{\alpha+\beta}$ is the leading term of $fg$, so
\begin{center}
{ \scriptsize LT}$(fg)$ = { \scriptsize LT}$(f)${ \scriptsize LT}$(g)$.
\end{center}
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.3}
{\it Prove (2.13)-(2.16). For (2.13), a computer will be helpful; the others can be proved by hand using the identity
$$(y_1+\cdots+y_m)^2 = y_1^2+\cdots+y_m^2 + 2 \sum_{i<j}y_i y_j.$$
}
\begin{proof}
Let $$ f= \Sigma_4x_1^3x_2^2x_3.$$
We must write $f$ as a polynomial in $\sigma_1,\sigma_2,\sigma_3,\sigma_4$.
The leading term of $f$ for the graded lexicographical order being $x_1^3x_2^2x_3^1x_4^0$, the algorithm of section 2.2 asks to subtract to $f$ the monomial $\sigma_1^{3-2}\sigma_2^{2-1} \sigma_3^{1-0} \sigma_4^0 = \sigma_1\sigma_2\sigma_3$.
\begin{enumerate}
\item[(a)]
\begin{align*}
\sigma_1\sigma_2\sigma_3 &=(x_1+x_2+x_3+x_4)\times(x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4)\\
&\qquad\times(x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4)\\
&= 3\,x_{{1}}{x_{{2}}}^{3}x_{{3}}x_{{4}}+8\,{x_{{1}}}^{2}{x_{{2}}}^{2}x_{
{3}}x_{{4}}+8\,{x_{{2}}}^{2}{x_{{4}}}^{2}x_{{1}}x_{{3}}+8\,{x_{{2}}}^{
2}{x_{{3}}}^{2}x_{{1}}x_{{4}}+8\,{x_{{1}}}^{2}x_{{2}}{x_{{4}}}^{2}x_{{
3}}\\
&+8\,{x_{{1}}}^{2}x_{{2}}{x_{{3}}}^{2}x_{{4}}+8\,x_{{2}}{x_{{3}}}^{2
}{x_{{4}}}^{2}x_{{1}}+3\,{x_{{1}}}^{3}x_{{2}}x_{{3}}x_{{4}}+3\,x_{{2}}
{x_{{4}}}^{3}x_{{1}}x_{{3}}+3\,x_{{2}}{x_{{3}}}^{3}x_{{1}}x_{{4}}\\
&+{x_{{1}}}^{3}{x_{{4}}}^{2}x_{{3}}+3\,{x_{{2}}}^{2}{x_{{3}}}^{2}{x_{{4}}}^{
2}+{x_{{1}}}^{2}{x_{{2}}}^{3}x_{{3}}+{x_{{3}}}^{2}{x_{{4}}}^{3}x_{{2}}
+{x_{{2}}}^{2}{x_{{3}}}^{3}x_{{1}}+3\,{x_{{1}}}^{2}{x_{{2}}}^{2}{x_{{3
}}}^{2}\\
&+{x_{{1}}}^{2}{x_{{3}}}^{3}x_{{4}}+{x_{{3}}}^{3}{x_{{4}}}^{2}x_
{{2}}+{x_{{2}}}^{3}{x_{{3}}}^{2}x_{{4}}+{x_{{2}}}^{2}{x_{{3}}}^{3}x_{{
4}}+{x_{{3}}}^{2}{x_{{4}}}^{3}x_{{1}}+{x_{{2}}}^{3}{x_{{3}}}^{2}x_{{1}
}\\
&+{x_{{2}}}^{3}{x_{{4}}}^{2}x_{{1}}+{x_{{2}}}^{2}{x_{{4}}}^{3}x_{{1}}+
{x_{{2}}}^{3}{x_{{4}}}^{2}x_{{3}}+{x_{{3}}}^{3}{x_{{4}}}^{2}x_{{1}}+{x
_{{1}}}^{3}{x_{{2}}}^{2}x_{{3}}+{x_{{1}}}^{3}{x_{{3}}}^{2}x_{{2}}\\
&+{x_{
{1}}}^{2}{x_{{4}}}^{3}x_{{2}}+3\,{x_{{1}}}^{2}{x_{{2}}}^{2}{x_{{4}}}^{
2}+{x_{{1}}}^{3}{x_{{3}}}^{2}x_{{4}}+{x_{{1}}}^{3}{x_{{2}}}^{2}x_{{4}}
+3\,{x_{{1}}}^{2}{x_{{3}}}^{2}{x_{{4}}}^{2}+{x_{{2}}}^{2}{x_{{4}}}^{3}
x_{{3}}\\
&+{x_{{1}}}^{3}{x_{{4}}}^{2}x_{{2}}+{x_{{1}}}^{2}{x_{{2}}}^{3}x_
{{4}}+{x_{{1}}}^{2}{x_{{4}}}^{3}x_{{3}}+{x_{{1}}}^{2}{x_{{3}}}^{3}x_{{
2}}\\
&=8\Sigma_4 x_1^2x_2^2x_3x_4+3\Sigma_4x_1^3x_2x_3x_4+3\Sigma_4x_1^2x_2^2x_3^2+\Sigma_4x_1^3x_2^2x_3.\\
\end{align*}
We find the 96 terms of the product $\sigma_1\sigma_2\sigma_3$ (see Ex. 2.2.12):
$\Sigma_4 x_1^2x_2^2x_3x_4$ has $\frac{4!}{2!2!} = 6 $ terms, with the coefficient 8 : 48 terms.
$\Sigma_4x_1^3x_2x_3x_4$ has $\frac{4!}{1!3!} = 4$ terms, with the coefficient 3 : 12 terms.
$\Sigma_4x_1^2x_2^2x_3^2$ has $\frac{4!}{3!1!} = 4$ terms, with the coefficient 3 : 12 terms.
$\Sigma_4x_1^3x_2^2x_3$ has $\frac{4!}{1!1!1!1!} = 24$ terms, with the coefficient 1 : 24 terms..
We obtain this product with the following Maple instructions :
$> P = (x+x_1).(x+x_2).(x+x_3)(x+x_4);$
$> p:=\mathrm{expand}(P);$
$> q:=\mathrm{collect}(p,x);$
$> \sigma_1:=\mathrm{coeff}(q,x,3); \sigma_2:=\mathrm{coeff}(q,x,2);\sigma_3:=\mathrm{coeff}(q,x,1);\sigma_4:=\mathrm{coeff}(q,x,1);$
$> \mathrm{expand}(\sigma_1.\sigma_2.\sigma_3);$
With sage :
\begin{verbatim}
e = SymmetricFunctions(QQ).e()
g = (e([1])* e([2])*e([3])).expand(4);g
\end{verbatim}
\item[(b)]
So
\begin{align*}
f_1 &= f - \sigma_1\sigma_2\sigma_3\\
&=-8\Sigma_4 x_1^2x_2^2x_3x_4-3\Sigma_4x_1^3x_2x_3x_4-3\Sigma_4x_1^2x_2^2x_3^2.\\
\end{align*}
The leading of $f_1$ is $-3x_1^3x_2x_3x_4$, so we must subtract $-3 \sigma_1^2 \sigma_4$ to $f_1$.
\begin{align*}
\sigma_1^2\sigma_4&=(\Sigma_4 x_1)^2 (x_1x_2x_3x_4)\\
&=(\Sigma_4 x_1^2 + 2 \Sigma_4 x_1x_2)x_1x_2x_3x_4\\
&= \Sigma_4 x_1^3x_2x_3x_4 + 2 \Sigma_4 x_1^2x_2^2x_3x_4,
\end{align*}
therefore $$f_2 = f - \sigma_1\sigma_2\sigma_3 +3 \sigma_1^2 \sigma_4 = -3\Sigma_4x_1^2x_2^2x_3^2-2\Sigma_4 x_1^2x_2^2x_3x_4.$$
\item[(c)] The leading term of $f_2$ is $-3x_1^2x_2^2x_3^2$, so must subtract $-3\sigma_3^2$ to $f_2$.
\begin{align*}
\sigma_3^2&=(\Sigma_4 x_1x_2x_3)^2\\
&= \Sigma_4 x_1^2x_2^2x_3^2 + 2 \Sigma_4 x_1^2x_2^2x_3x_4,
\end{align*}
$$f_3 = f - \sigma_1\sigma_2\sigma_3 +3 \sigma_1^2 \sigma_4 +3\sigma_3^2 = 4 \Sigma_4 x_1^2x_2^2x_3x_4.$$
\item[(d)] The leading term of $f_3$ is $4x_1^2x_2^2x_3x_4$, so we must subtract $ 4\sigma_2 \sigma_4$ to $f_3$.
\begin{align*}
\sigma_2 \sigma_4 &= (\Sigma_4 x_1x_2) (x_1x_2x_3x_4)\\
&=\Sigma_4x_1^2x_2^2x_3x_4,
\end{align*}
so $f_4 = f - \sigma_1\sigma_2\sigma_3 +3 \sigma_1^2 \sigma_4 +3\sigma_3^2 - 4\sigma_2 \sigma_4 = 0$.
$$f = \Sigma_4x_1^3x_2^2x_3 = \sigma_1\sigma_2\sigma_3 -3 \sigma_1^2 \sigma_4 -3\sigma_3^2 + 4\sigma_2 \sigma_4.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.4}
{\it Let $f = x^3+bx^2+cx+d \in F[x]$ have roots $\alpha_1,\alpha_2,\alpha_3$ in the field $L$ containing $F$, and let $g$ be the polynomial defined in (2.17). Show carefully that
$$g(x) = x^3 + 2bx^2 + (b^2+c)x +bc-d.$$
}
\begin{proof}
Let
\begin{align*}
f &= x^3+bx^2+cx+d\\
&=( x-\alpha)(x-\beta)(x-\gamma)\\
&= x^3 - \sigma_1(\alpha,\beta,\gamma)x^2 + \sigma_2(\alpha,\beta,\gamma)x - \sigma_3(\alpha,\beta,\gamma),\\
\end{align*}
which gives
\begin{align*}
& \sigma_1(\alpha,\beta,\gamma) = -b,\\
& \sigma_2(\alpha,\beta,\gamma)=+c,\\
& \sigma_3(\alpha,\beta,\gamma)=-d.
\end{align*}
Let
\begin{align*}
G(x) &= (x -(x_1+x_2))(x-(x_1+x_3))(x-(x_2+x_3)).\\
\end{align*}
Then $$g(x) = (x -(\alpha_1+\alpha_2))(x-(\alpha_1+\alpha_3))(x-(\alpha_2+\alpha_3))$$ is obtained from $G$ by the evaluation morphism which sends $x_1,x_2,x_3$ on $\alpha_1,\alpha_2,\alpha_3$.
Let $p = (x+x_1)(x+x_2)(x+x_3) = x+ \sigma_1x^2+\sigma_2 x +\sigma_3$.
Then
\begin{align*}
G &= (x - \sigma_1 + x_3)(x-\sigma_1+x_2)(x - \sigma_1 + x_1)\\
&=p(x-\sigma_1)\\
&=(x-\sigma_1)^3 + \sigma_1 (x-\sigma_1)^2 + \sigma_2(x-\sigma_1) + \sigma_3\\
&=(x^3 -3 \sigma_1 x^2 + 3 \sigma_1^2 x - \sigma_1^3) + (\sigma_1x^2 - 2 \sigma_1^2x + \sigma_1^3)+ (\sigma_2 x - \sigma_1 \sigma_2) + \sigma_3\\
&=x^3 - 2 \sigma_1 x^2 + (\sigma_1^2+\sigma_2)x + (\sigma_3 - \sigma_1\sigma_2).
\end{align*}
The previous evaluation morphism sends $\sigma_1$ on $\sigma_1(\alpha_1,\alpha_2,\alpha_3)=-b$,
$\sigma_2$ on $\sigma_2(\alpha_1,\alpha_2,\alpha_3)=c$, $\sigma_3$ on $\sigma_3(\alpha_1,\alpha_2,\alpha_3)=-d$.
\begin{align*}
g(x) &= x^3 +2bx^2+(b^2+c)x+bc-d.
\end{align*}
In the example 2.2.6,
$$f(x) = x^3+2x^2+x+7,$$
where
$$b=2,c=1,d=7,$$
$\alpha_1,\alpha_2,\alpha_3$ being the roots of $g$ in $\mathbb{C}$,
we obtain
\begin{align*}
g(x) &= (x -(\alpha_1+\alpha_2))(x-(\alpha_1+\alpha_3))(x-(\alpha_2+x\alpha_3))\\
&=x^3 +2bx^2+(b^2+c)x+bc-d\\
&=x^3 + 4x^2+5x-5.
\end{align*}
\end{proof}
\paragraph{Ex. 2.2.5}
{\it This exercise will complete the proof of Theorem 2.2.7. Let $h \in F[u_1,\ldots,u_n]$ be a nonzero polynomial. The goal is to prove that $h(\sigma_1,\ldots,\sigma_n)$ is not the zero polynomial in $x_1,\ldots,x_n$.
\begin{enumerate}
\item[(a)] If $cu_1^{b_1}\cdots u_n^{b_n}$ is a term of $h$, then use Exercise 2 to show that the leading term of $c\sigma_1^{b_1}\cdots \sigma_n^{b_n}$ is $cx_1^{b_1+\cdots+b_n} x_2^{b_2+\cdots+b_n}\cdots x_n^{b_n}$.
\item[(b)] Show that $(b_1,\ldots,b_n) \mapsto (b_1+\cdots+b_n, b_2+\cdots+b_n, \ldots,b_n)$ is one-to-one.
\item[(c)] To see why $h(\sigma_1,\ldots,\sigma_n)$ is nonzero, consider the term of $h(u_1,\ldots,u_n)$ for which the leading term of $c\sigma_1^{b_1}\cdots\sigma_n^{b_n}$ is maximal. Prove that this leading term is in fact the leading term of $h(\sigma_1,\ldots,\sigma_n)$, and explain how this proves what we want.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $h \in F[u_1,u_2,\cdots,u_n],h\neq 0$, and $cu_1^{b_1}u_2^{b_2}\cdots u_n^{b_n}$ a term of $h$.
The leading term of a product is the product of the leading term of the factors (Ex 2.2.2), and the leading term of $\sigma_r$ is $x_1x_2\cdots x_r$ (Ex 2.2.1), so the leading term of $c\sigma_1^{b_1}\sigma_2^{b_2}\cdots \sigma_n^{b_n}$ is
\begin{align*}
{\mathrm {LT}}(c\sigma_1^{b_1}\sigma_2^{b_2}\cdots \sigma_n^{b_n})&=c(x_1)^{b_1}(x_1x_2)^{b_2}\cdots(x_1x_2\cdots x_n)^{b_n}\\
&=c x_1^{b_1+b_2+\cdots+b_n} x_2^{b_2+\cdots+ b_n} \cdots x_n^{b_n}.\\
\end{align*}
\item[(b)]
If $a_i,b_i \in \mathbb{Z}$, the system of equations
\begin{align*}
b_1+b_2+\cdots+b_n=a_1,\\
b_2+\cdots + b_n=a_2,\\
\cdots\\
b_n=a_n,
\end{align*}
is equivalent to
\begin{align*}
b_1 &=a_1-a_2,\\
b_2&=a_2-a_3,\\
&\cdots\\
b_{n-1} &= a_{n}-a_{n-1},\\
b_n &= a_n.
\end{align*}
So the application $f : \mathbb{Z}^n \to \mathbb{Z}^n$ defined by $$(b_1,b_2,\cdots,b_n)\mapsto (b_1+b_2+\cdots+b_n, b_2+\cdots+b_n, \cdots,b_n)$$ is bijective (one-to-one and onto).
\item[(c)]
As $h\neq 0$, there exists a term $cu_1^{b_1}u_2^{b_2}\cdots u_n^{b_n}$ of $h$ such that the leading term $cx_1^{a_1}\cdots x_n^{a_n}$ of $c\sigma_1^{b_1}\sigma_2^{b_2}\cdots \sigma_n^{b_n}$ is maximal. Then every other term $c'u_1^{b'_1}u_2^{b'_2}\cdots u_n^{b'_n}$ of $h$ verifies $(b'_1,b'_2,\cdots,b'_n) \neq (b_1,b_2,\cdots,b_n)$ and the leading term $c'x_1^{a'_1}\cdots x_n^{a'_n}$ of $c'\sigma_1^{b'_1}\sigma_2^{b'_2}\cdots \sigma_n^{b'_n}$ is less than $cx_1^{a_1}\cdots x_n^{a_n}$ : it can not be greater because this term is maximal, and $(a_1,a_2,\cdots,a_n) \neq (a'_1,a'_2,\cdots,a'_n)$, since the application $f$ in (b) is bijective. The graded lexicographic order defined on the monomials $x_1^{a_1}\cdots x_n^{a_n}$ being a total order, $x_1^{a_1}\cdots x_n^{a_n} > x_1^{a'_1}\cdots x_n^{a'_n}$.
So $cx_1^{a_1}\cdots x_n^{a_n}$ is greater than the leading terms of every other term $c'\sigma_1^{a'_1}\sigma_2^{a'_2}\cdots \sigma_n^{a'_n}$ of $h(\sigma_1,\cdots,\sigma_n) \neq 0$, so is a fortiori greater than every other term of $h(\sigma_1,\cdots,\sigma_n)$.
It can't be cancelled in the sum of these terms, and consequently $h(\sigma_1,\cdots,\sigma_n) \neq 0$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.6}
{\it Here is an example of polynomials which are not algebraically independent. Consider $x_1^2,x_1x_2,x_2^2 \in F[x_1,x_2]$, and let $\phi : F[u_1,u_2,u_3] \to F[x_1,x_2]$ be defined by
$$\phi(u_1) = x_1^2,\phi(u_2)= x_1x_2, \phi(u_3) = x_2^2.$$
Show that $\phi$ is not one-to-one by finding a nonzero polynomial $h \in F[u_1,u_2,u_3]$ such that $\phi(h)=0$.
}
\begin{proof}
Let $h = u_1u_3 -u_2^2$.
Then the unique algebra morphism $\phi$ such that
$$\phi(u_1) = x_1^2, \phi(u_2) = x_1x_2, \phi(u_3) = x_2^2$$
verifies
$$\phi(h) = \phi(u_1)\phi(u_3) - (\phi(u_2))^2 = x_1^2 x_2^2 - (x_1x_2)^2 = 0.$$
So $h \neq 0$ is in the kernel of $\phi$, and $\phi$ is not one-to-one. Thus $x_1^2,x_1x_2,x_2^2$ are not algebraically independent.
\end{proof}
\paragraph{Ex. 2.2.7}
{\it Given a polynomial $f \in F[x_1,\ldots,x_n]$ and a permutation $\sigma \in S_n$, let $\sigma \cdot f$ denote the polynomial obtained from $f$ by permuting the variables according to $\sigma$. Show that $\prod_{\sigma \in S_n} \sigma \cdot f$ and $\sum_{\sigma \in S_n} \sigma \cdot f$ are symmetric polynomials.
}
\begin{proof}
We use the relations (2.31) p. 48, (or (6.7) p. 138) proved in Exercises 6.4.3 and 6.4.4 : for all $\sigma,\tau \in S_n$, and all $f,g \in F[x_1,x_2,\cdots,x_n]$ :
\begin{align}
\sigma \cdot (f+g) &= \sigma \cdot f + \sigma \cdot g, \label{eq2.2.7:2}\\
\sigma \cdot (fg) &= (\sigma \cdot f)(\sigma \cdot g),\label{eq2.2.7:3}\\
\tau\cdot (\sigma \cdot f) &= (\tau \circ \sigma) \cdot f.\label{eq2.2.7:4}
\end{align}
(We will use the notation $\tau \circ \sigma = \tau \sigma$.)
Let $g = \prod_{\sigma \in S_n} \sigma \cdot f$.
Then, if $\tau \in S_n$, using \eqref{eq2.2.7:3} and \eqref{eq2.2.7:4}
\begin{align*}
\tau \cdot g &= \tau \cdot \prod_{\sigma \in S_n} \sigma \cdot f\\
&=\prod_{\sigma \in S_n} \tau \cdot (\sigma \cdot f)\\
&=\prod_{\sigma \in S_n} (\tau \sigma) \cdot f.
\end{align*}
As the application $S_n \to S_n, \sigma \mapsto \tau \sigma$ is bijective, the index change $\sigma' = \tau \sigma$ gives
$$\prod_{\sigma \in S_n} (\tau \sigma) \cdot f = \prod_{\sigma' \in S_n} \sigma' \cdot f = \prod_{\sigma \in S_n} \sigma \cdot f= g.$$
So, for all $\tau \in S_n, \tau \cdot g = g$ : thus $g$ is a symmetric polynomial.
Same proof for $\tau. \sum _{\sigma \in S_n} \sigma \cdot f = \sum _{\sigma \in S_n} \sigma \cdot f $ : use (2) in place of (3).
Conclusion : $\prod\limits_{\sigma \in S_n} \sigma \cdot f$ and $\sum\limits_{\sigma \in S_n} \sigma \cdot f$ are symmetric polynomials.
\end{proof}
\paragraph{Ex. 2.2.8}
{\it In this exercise, you will prove that if $\varphi \in F(x_1,\ldots,x_n)$ is symmetric, then $\varphi$ is a rational function in $\sigma_1,\ldots,\sigma_n$ with coefficients in $F$. To begin the proof, we know that $\varphi = A/B$, where $A$ and $B$ are in $F[x_1,\ldots,x_n]$. Note that $A$ and $B$ need not be symmetric, only their quotient $\varphi = A/B$ is. Let
$$C = \prod_{\sigma \in S_n \setminus \{e\} } \sigma \cdot B,$$
where we are using the notation of Exercise 7.
\begin{enumerate}
\item[(a)] Use Exercise 7 to show that $BC$ is a symmetric polynomial.
\item[(b)] Then use the symmetry of $\varphi = A/B$ to show that $AC$ is a symmetric polynomial.
\item[(c)] Use $\varphi = (AC)/(BC)$ and theorem 2.2.2 to conclude that $\varphi$ is a rational function in the elementary symmetric polynomials with coefficients in $F$.
\end{enumerate}
}
\begin{proof}
Let $\varphi = A/B\in F(x_1,\cdots,x_n)$ a symmetric rational function:
$$\forall \sigma \in S_n,\ \sigma \cdot \varphi = \sigma \cdot A/\sigma \cdot B = \varphi = A/B.$$
\begin{enumerate}
\item[(a)]
Let $$C = \prod_{\sigma \in S_n\setminus \{e\}} \sigma \cdot B.$$
Then $$ BC = \prod_{\sigma \in S_n}\sigma \cdot B.$$
By Exercise 2.2.7, $BC$ is then a symmetric polynomial.
\item[(b)]
Note that the rules (2.31) for polynomials extend to rational functions. In particular, if $\varphi = A/B,\psi =A_1/B_1 \in F(x_1,\cdots,x_n)$, and $\sigma \in S_n$,
$$\sigma \cdot (\varphi \psi) = (\sigma \cdot \varphi)\ (\sigma \cdot \psi).$$
Indeed,
$$ (\sigma \cdot \varphi)\ (\sigma \cdot \psi) = \frac{\sigma \cdot A}{\sigma \cdot B} \frac{\sigma \cdot A_1}{\sigma \cdot B_1}=\frac{\sigma \cdot (AA_1)}{\sigma \cdot (BB_1)} = \sigma \cdot (\varphi \psi). $$
Using this property, for all $\sigma \in S_n$, from $AC = \varphi BC$, we obtain
$$\sigma \cdot (AC) = (\sigma \cdot \varphi)(\sigma \cdot (BC)) = \varphi BC = AC.$$
So $AC$ is a symmetric polynomial.
\item[(c)]
So $\varphi = \frac{AC}{BC}$ is the quotient of two symmetric polynomials, thus there exists $h,k \in F[x_1,\cdots,x_n]$ such that
$$\varphi = \frac{AC}{BC} = \frac{h(\sigma_1,\cdots,\sigma_n)}{k(\sigma_1,\cdots,\sigma_n)} =\left( \frac{h}{k}\right)(\sigma_1,\cdots,\sigma_n).$$
$\varphi \in F(\sigma_1,\cdots,\sigma_n)$ is a rational function in the elementary symmetric polynomials with coefficients in $F$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.9}
{\it In the Historical Notes, we gave Gauss's definition of lexicographic order.
\begin{enumerate}
\item[(a)] Give a definition (in English) of lexicographic order.
\item[(b)] In the proof of Theorem 2.2.2, we showed that grade lexicographic order has the property that there are only finitely many monomials less than a given monomial. In contrast this property fails for lexicographic order. Give an explicit example to illustrate this.
\item[(c)] In spite of part (b), lexicographic order does have an interesting finiteness property. Namely, prove that there is no infinite sequence of polynomials $f_1,f_2,f_3,\ldots$ that have strictly decreasing terms according to lexicographic order.
\item[(d)] Explain how part (c) allows one to prove Theorem 2.2.2 using lexicographic order.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
For the lexicographic order, $x_1^{a_1}\cdots x_n^{a_n} < x_1^{b_1}\cdots x_n^{b_n}$ is equivalent by definition to
$$\exists j \in [1,n], (\forall i \in \N,\ 1\leq i< j \Rightarrow a_i = b_i) \ \mathrm{and}\ a_j<b_j.$$
(The property $(\forall i \in \N ,\ 1\leq i< j \Rightarrow a_i = b_i) $ is automatically verified for $j=1$, since $1\leq i< j $ is false, so the implication is true.)
In informal terms :
$a_1<b_1$ or ($a_1=b_1$ and $a_2<b_2$) or ($a_1=b_1,a_2=b_2$ and $a_3<b_3$) or $\ldots$
In other words, $x_1^{a_1}\cdots x_n^{a_n} < x_1^{b_1}\cdots x_n^{b_n}$ iff the first subscript $i$ such that $a_i \neq b_i$ exists and verifies $a_i < b_i$.
This relation $\leq$ is a total order.
\item[(b)]
The monomials less than $x_1 = x_1^1 x_2^0 \cdots x_n^0$ for the lexicographic order contain the monomials $x_1^0 x_2^{a_2}\ldots x_n^{a_n}$, where $a_2,\cdots, a_n$ are arbitrary integers in $\N = \Z_{\geq 0}$. There are infinitely many such monomials.
\item[(c)]
We show this property by induction on the numbers of variables $x_i$.
If there is a unique variable, say $x_1$, then a strictly decreasing sequence of monomial $x_1^{n_0} > x_1^{n_2} >\cdots$, with $n_i \in \N$, is such that $n_0 > n_1 > \cdots$: such a sequence is necessary finite. This is a property of the natural order in $\N$: Every non empty subset of $\N$ has a smallest element, so a strictly decreasing infinite sequence in $\N$ doesn't exist.
Suppose that this property is true for $n-1$ variables, say $x_2, \cdots,x_n$. Consider the sequence
$$x_1^{i_{1,1}}\cdots x_n^{i_{1,n}} > x_1^{i_{2,1}}\cdots x_n^{i_{2,n}} > \cdots >x_1^{i_{k,1}}\cdots x_n^{i_{k,n}} >\cdots .$$
By the induction hypothesis, for each fixed exponent $i_{k,1}$ of $x_1$, there exists only finitely monomial in this sequence with this exponent for $x_1$. As these exponents are at most $i_{1,1}$, the sequence is finite and the induction is done.
\item[(d)]
The beginning of the demonstration of Theorem 2.2.2 remains unchanged with the lexicographic order. Then we builds a sequence
$$f,f_1 = f -cg, f_2= f -cg -c_1g_1, \ldots$$
of polynomials whose leading terms constitute a strictly decreasing sequence for this order, until $f_i = 0$. By (c), this sequence is finite, so one polynomial $f_i$ is zero, which completes the algorithm.
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.10}
{\it Apply the proof of theorem 2.2.2 to express $\sum_3 x_1^2x_2$ in terms of $\sigma_1, \sigma_2, \sigma_3$.
}
\begin{proof} Explicitly,
$$f = \Sigma_3 x_1^2 x_2 = x_1^2x_2+x_1^2 x_3 + x_1 x_2^2+x_1 x_3^2 +x_2^2x_3+x_2 x_3^2.$$
Note that $x_1^2 x_2 = x_1^2 x_2^1 x_3^0$ is the leading term for the graded lexicographic order, so the following term in the sequence is $g = f - \sigma_1^{2-1} \sigma_2^{1-0} \sigma_3^0 = f - \sigma_1 \sigma_2$.
\begin{align*}
\sigma_1 \sigma_2 &= (x_1+x_2+x_3) (x_1 x_2+x_1x_3+x_2x_3)\\
&= x_1^2x_2 + x_1^2 x_3+x_1x_2x_3+x_1x_2^2+x_2^2x_3+x_1x_2x_3+x_1x_3^2+x_2x_3^2+x_1x_2x_3\\
&=f+ 3x_1x_2x_3,
\end{align*}
thus
$$f = \Sigma_3 x_1^2 x_2 = \sigma_1\sigma_2 - 3 \sigma_3.$$
\end{proof}
\paragraph{Ex. 2.2.11}
{\it Let the roots of $y^3+2y^2-3y+5$ be $\alpha,\beta,\gamma \in \C$. Find polynomials with integers coefficients that have the following roots:
\begin{enumerate}
\item[(a)] $\alpha \beta, \alpha \gamma$ and $\beta \gamma$.
\item[(b)] $\alpha +1, \beta + 1$, and $\gamma +1$.
\item[(c)] $\alpha^2, \beta^2$, and $\gamma^2$.
\end{enumerate}
}
\begin{enumerate}
\item[(a)]
$f = y^3+2y^2-3y+5 = (y-\alpha)(y-\beta)(y-\gamma) = y^3-\sigma_1y^2+\sigma_2 y -\sigma_3,$
so
$\sigma_1 = -2, \sigma_2=-3,\sigma_3 = -5.$
\begin{align*}
g&=(y-\alpha\beta)(y-\alpha\gamma)(y-\beta \gamma)\\
&=y^3-(\alpha \beta + \alpha \gamma+\beta \gamma) y^2 + (\alpha^2 \beta \gamma+\alpha \beta^2 \gamma+\alpha \beta \gamma^2) y +\alpha^2\beta^2\gamma^2\\
&=y^3-\sigma_2y^2+\sigma_3\sigma_1 y +\sigma_3^2\\
&=y^3+3y^2+10y+25.
\end{align*}
$y^3+3y^2+10y+25$ is the polynomial whose roots are $\alpha \beta, \alpha \gamma, \beta \gamma$.
\item[(b)]
\begin{align*}
g &=(y - \alpha-1)(y-\beta-1)(y - \gamma-1)\\
&= f(y-1)\\
&= (y-1)^3+2(y-1)^2-3(y-1)+5\\
&= y^3-3y^2+3y-1+2y^2-4y+2-3y+3+5\\
&=y^3-y^2-4y+9.
\end{align*}
\item[(c)]
Let $h(y) = (y-\alpha^2)(y-\beta^2)(y-\gamma^2)$.
Then
\begin{align*}
h(y^2) &= (y^2-\alpha^2)(y^2 - \beta^2)(y^2-\gamma^2)\\
&=(y-\alpha)(y-\beta)(y-\gamma)(y+\alpha)(y+\beta)(y+\gamma)\\
&=(y^3+2y^2-3y+5)(y^3-2y^2-3y-5)\\
&=(y^3-3y)^2-(2y^2+5)^2\\
&=y^6-6y^4+9y^2 - 4 y^4-20y^2-25\\
&=y^6-10y^4-11y^2-25.
\end{align*}
Thus $$h(y) = (y-\alpha^2)(y-\beta^2)(y-\gamma^2) = y^3-10y^2-11y-25.$$
\end{enumerate}
(In particular, $\sigma_2(\alpha^2,\beta^2,\gamma^2 )= -11$, which we can verify directly :
$\alpha^2\beta^2+\alpha^2\gamma^2+\beta^2\gamma^2 = \sigma_2^2- 2 \sigma_1\sigma_3 = 9-20 = -11$.)
\paragraph{Ex. 2.2.12}
{\it Consider the symmetric polynomial $f = \sum_n x_1^{a_1}\cdots x_n^{a_n}$.
\begin{enumerate}
\item[(a)] Prove that $f$ has $n!$ terms when $a_1,\ldots,a_n$ are distinct.
\item[(b)] (More challenging) Suppose that the exponents $a_1,\ldots, a_n$ break up into $r$ disjoint groups so that exponent within the same group are equal, but exponents from different groups are unequal. Let $l_i$ denote the number of elements in the $i$th group, so that $l_1+l_2+\cdots+l_r = n$. Prove that the number of terms in $f$ is
$$\frac{n!}{l_1!\cdots l_r!}.$$
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Here we suppose that the exponents $a_i$ are distinct
If $\sigma,\tau \in S_n$ and $\sigma \neq \tau$, then $x_{\sigma(1)}^{a_1}\cdots x_{\sigma(n)}^{a_n} \neq x_{\tau(1)}^{a_1}\cdots x_{\tau(n)}^{a_n}$.
Then $\Sigma_n x_{1}^{a_1}\cdots x_{n}^{a_n} = \sum\limits_{\sigma \in S_n} x_{\sigma(1)}^{a_1}\cdots x_{\sigma(n)}^{a_n}$ has $n! = |S_n|$ terms.
\item[(b)]
Now we suppose that the exponents have same value on $I_1 = \gcro1,l_1\dcro$ and on each interval $I_k = \gcro l_1+\cdots+l_{k-1}+1, l_1+\cdots+l_k\dcro , (k=2,\cdots,r)$, with distinct constants on each interval.
The terms of $\Sigma_n x_{1}^{a_1}\cdots x_{n}^{a_n}$ are the terms of the image of the application
$$\varphi :
\begin{array}{ccc}
S_n & \to &F[x_1,\cdots,x_n] \\
\sigma & \mapsto & x_{\sigma(1)}^{a_1}\cdots x_{\sigma(n)}^{a_n} = \sigma \cdot(x_{1}^{a_1}\cdots x_{n}^{a_n}).
\end{array}
$$
This image is the orbit ${\cal O}_t $ of $t=x_{1}^{a_1}\cdots x_{n}^{a_n}$ for the group operation defined by $(\sigma,f) \mapsto\sigma \cdot f$.
As $\vert {\cal O}_t \vert = \vert S_n \vert / \vert \mathrm{Stab}_{S_n}(t) \vert$, it is sufficient to compute the cardinality of this stabilizer $S = \mathrm{Stab}_{S_n}(t)$, stabilizer in $S_n$ of $x_{1}^{a_1}\cdots x_{n}^{a_n}$:
$$S = \{ \sigma \in S_n \ \vert \ x_{\sigma(1)}^{a_1}\cdots x_{\sigma(n)}^{a_n}=x_{1}^{a_1}\cdots x_{n}^{a_n} \}.$$
Note that $\sigma \in S$ iff $\sigma$ applies $I_k$ on itself : $$\sigma(I_k) = I_k,\ k=1,\ldots,r.$$
Let $\psi$ be the application
$$\psi:
\begin{array}{ccc}
S & \to &S(I_1) \times S(I_2)\times \cdots S(I_r) \\
\sigma & \mapsto & (\sigma_1,\sigma_2, \cdots,\sigma_r)
\end{array}
$$
where $\sigma_k = \sigma \vert_{I_k}$ is the restriction of $\sigma$ to $I_k$.
$\psi $ is bijective, so $$\vert S \vert = l_1!l_2!\cdots l_r!.$$
So the number of terms in $\Sigma_n x_{1}^{a_1}\cdots x_{n}^{a_n}$, equal to the cardinality of the orbit of the monomial $t$, is equal to
$$\vert {\cal O}_t \vert = \vert S_n \vert / \vert \mathrm{Stab}_{S_n}(x_{1}^{a_1}\cdots x_{n}^{a_n}) \vert = \frac{n!}{l_1!l_2!\cdots l_r!}$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.13}
{\it Let $g_1,g_2 \in F[x_1,\ldots,x_n]$ be homogeneous of total degree $d_1,d_2$.
\begin{enumerate}
\item[(a)] Show that $g_1g_2$ is homogeneous of total degree $d_1+d_2$.
\item[(b)] When is $g_1+g_2$ homogeneous ?
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Every term $m$ of $g_1g_2$ is a product of a term $m_1$ of $g_1$ with a term $m_2$ of $g_2$.
$\deg(m) = \deg(m_1m_2) = \deg(m_1) + \deg(m_2) = d_1+d_2$.
So $g_1g_2$ is homogeneous of degree $d_1+d_2$.
\item[(b)]
$g_1+g_2$ is homogeneous iff $d_1=d_2$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.14}
{\it We define the weight of $\sigma_1^{a_1}\cdots \sigma_n^{a_n}$ to be $a_1+2a_2+\cdots+na_n$.
\begin{enumerate}
\item[(a)] Prove that $\sigma_1^{a_1}\cdots \sigma_n^{a_n}$ is homogeneous and that its weight is the same as its total degree when considered as a polynomial in $x_1,\ldots,x_n$.
\item[(b)] Let $f = F(x_1,\ldots,x_n]$ be symmetric and homogeneous of total degree $d$. Show that $f$ is a linear combination of products $\sigma_1^{a_1}\cdots \sigma_n^{a_n}$ of weight $d$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] By Ex. 2.2.13, each $\sigma_k$ being homogeneous of degree $k$, the product $\sigma_1^{a_1}\cdots \sigma_n^{a_n}$ is homogeneous. As $\deg(\sigma_k) = k$, $\deg(\sigma_1^{a_1}\cdots \sigma_n^{a_n}) = a_1+2a_2+\cdots+na_n$ is equal to the weight of $\sigma_1^{a_1}\cdots \sigma_n^{a_n}$.
\item[(b)] Since $f$ is symmetric, $f$ is a linear combination of products $\sigma_1^{a_1}\cdots \sigma_n^{a_n}$. These products being homogeneous of degree $a_1+2a_2+\cdots+na_n$, and $f$ being homogeneous, by Ex 2.2.13(b), each term of this sum has degree $d$.
Conclusion : $f$ is a linear combination of products $\sigma_1^{a_1}\cdots \sigma_n^{a_n}$ of weight $d$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.15}
{\it Given a polynomial $f \in F[x_1,\ldots,x_n]$, let $\deg_i(f)$ be the maximal exponent of $x_i$ which appears in $f$. Thus $f =x_1^3x_2 +x_1x_2^4$ has degree $\deg_1(f) = 3$ and $\deg_2(f) = 4$.
\begin{enumerate}
\item[(a)] If $f$ is symmetric, explain why the $\deg_i(f)$ are the same for $i=1,\ldots,n$.
\item[(b)] Show that $\deg_i(\sigma_1^{a_1}\cdots \sigma_n^{a_n}) = a_1+a_2+\cdots+a_n$ for $i=1,\ldots,n$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] If $x_1$ appears in a term $c x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$ of $f$, then the transposition $\tau=(1,2)$ applied to $f$ show that $c x_2^{a_1}x_1^{a_2}\cdots x_n^{a_n}$ is a term of $f$, so $x_2$ appears in a term of $f$ with the same exponent. Thus the maximal exponent is the same for the two variables : $$\deg_1(f) = \deg_2(f),$$
and the same is true for any pair of variables.
\item[(b)]
As $\sigma_k = \sum\limits_{1\leq i_1 < \cdots<i_k\leq n} x_{i_1}x_{i_2}\cdots x_{i_k}$, $\deg_i(\sigma_k) = 1$.
For polynomial of one variable $x$, $\deg(pq) = \deg(p) + \deg(q)$, and $\deg_1(f)$ is the degree in $x_1$ of $f$ as an element of $k[x_2,\ldots,x_n][x_1]$, so
$$\deg_i(fg) = \deg_i(f)+ \deg_i(g).$$
Therefore
$\deg_i(\sigma_1^{a_1}\cdots \sigma_n^{a_n}) = a_1 \deg_i(\sigma_1) + \cdots + a_n\deg_i(\sigma_n) = a_1+\cdots+a_n$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.16}
{\it This exercise is based on [7, pp. 110-112] and will express the discriminant $\Delta = (x_1-x_2)^2(x_1-x_3)^2(x_2-x_3)^2$ in terms of the elementary symmetric functions without using a computer. We will use the terminology of Exercises 14 and 15. Note that $\Delta$ is homogeneous of total degree 6 and $\deg_i(\Delta) = 4$ for $i=1,2,3$.
\begin{enumerate}
\item[(a)] Find all products $\sigma_1^{a_1}\sigma_2^{a_2}\sigma_3^{a_3}$ of weight 6 and $\deg_i(\sigma_1^{a_1} \sigma_2^{a_2}\sigma_3^{a_3}) \leq 4$.
\item[(b)] Explain how part (a) implies that there are constants $l_1,\ldots,l_5$ such that
$$\Delta = l_1\sigma_3^2+l_2\sigma_1\sigma_2\sigma_3+l_3\sigma_1^3\sigma_3+l_4\sigma_2^3+l_5\sigma_1^2\sigma_2^2.$$
\item[(c)] We will compute the $l_i$ by using the universal property of the elementary symmetric polynomial. For example, to determine $l_1$, use the cube roots of unity $1,\omega,\omega^2$ to show that $x^3-1$ has coefficient $-27$. By applying the ring homomorphism defined by $x_1\mapsto 1,x_2\mapsto\omega,x_3\mapsto\omega^2$ to part (b), conclude that $l_1 = -27$.
\item[(d)] Show that $x^3-x$ has roots $0,\pm1$ and discriminant 4. By adapting the argument of part (c), conclude that $l_4 = -4$.
\item[(e)] Similarly, use $x^3-2x^2+x$ to show that $l_5 = 1$.
\item[(f)] Next, note that $x^3-2x^2-x+2$ has roots $\pm1,2$ and use this (together with the known values of $l_1,l_4,l_5)$) to conclude that $l_2-4l_3 = 34$.
\item[(g)] Finally use $x^3-3x^2+3x-1$ to show $l_2+3l_3 = 6$. Using part (f), this implies $l_2 = 18,l_3 = -4$ and gives the usual formula for $\Delta$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
By Ex. 14,15, to find all products $\sigma_1^{a_1} \sigma_2^{a_2} \sigma_3^{a_3}$ of weight 6 verifying $\deg_i(\sigma_1^{a_1} \sigma_2^{a_2} \sigma_3^{a_3}) \leq 4$, it suffices to solve the system of equations
$$
\left\{
\begin{array}{ccc}
a_1+2a_2+3a_3 & = & 6 \\
a_1+a_2+a_3 &\leq & 4
\end{array}
\right.
$$
The solutions of the first equation are
$$(0,0,2), (1,1,1), (3,0,1),(0,3,0) , (2,2,0), (4,1,0) (6,0,0).$$
Only the two last solutions don't verify the second condition. So the solutions of the system are
$$(0,0,2), (1,1,1), (3,0,1),(0,3,0) , (2,2,0),$$
which correspond to the symmetric polynomials
$$\sigma_3^2, \sigma_1\sigma_2\sigma_3, \sigma_1^3 \sigma_3, \sigma_2^3, \sigma_1^2 \sigma_2^2.$$
\item[(b)]
As $\Delta$ is homogeneous of total degree $\deg(\Delta) = 6 $ and as $\deg_i(\Delta) = 4, \ i=1,2,3$, by Ex. 14,15, $\Delta$ is a linear combination of products $\sigma_1^{a_1} \sigma_2^{a_2} \sigma_3^{a_3}$ of weight 6.
Moreover, the relative degree to the $i$-th variable of each of these products is at most 4 : if $f$ has the form
\begin{align*}
f &= f_1 + c \sigma_1^4 \sigma_2 + d \sigma_1^6\\
&= f_1+ c(x_1+x_2+x_3)^4(x_1x_2+x_1x_3+x_2x_3) + d (x_1+x_2+x_3)^6,\\
\end{align*}
where $\deg_i(f_1) \leq 4$, then the comparison of degree of $x_1^6$ gives $d=0$, and the term in $x_1^5$ gives $c=0$.
So there exists coefficients $l_i \in \Z$ such that
$$\Delta = l_1\sigma_3^2+l_2\sigma_1\sigma_2\sigma_3+l_3\sigma_1^3\sigma_3+ l_4\sigma_2^3+l_5\sigma_1^2\sigma_2^2.$$
\item[(c)]
The discriminant of $x^3-1$ is equal to
$$\Delta(1,\omega,\omega^2) = (1-\omega)^2(1-\omega^2)^2(\omega-\omega^2)^2$$
\begin{align*}
\sqrt{\Delta} &= (1-\omega)(1-\omega^2)(\omega - \omega^2)\\
&= -
\left \vert
\begin{array}{ccc}
1& 1 & 1 \\
1& \omega & \omega^2\\
1& \omega^2 & \omega
\end{array}
\right \vert\\
&= -(3\omega^2 - 3 \omega) = 3(\omega-\omega^2)\\
&= 3i\sqrt{3}.\\
\end{align*}
Therefore $$\Delta(1,\omega,\omega^2) = -27.$$
The ring homomorphism defined by $x_1 \mapsto 1, x_2 \mapsto \omega, x_3 \mapsto \omega^2$ sends $\Delta$ on $\Delta(1,\omega,\omega^2)$ and $\sigma_k$ on $\sigma_k(1,\omega,\omega^2)$. As $$\sigma_1(1,\omega,\omega^2) = \sigma_2(1,\omega,\omega^2) = 0,\sigma_3(1,\omega,\omega^2)=1,$$
$$l_1 = \Delta(1,\omega,\omega^2) = -27.$$
\item[(d)]
$x^3-x = x(x-1)(x+1)$ has roots $0,1,-1$.
$\Delta(0,1,-1) = (0-1)^2(0+1)^2(1+1)^2 = 4$ and $\sigma_1=0,\sigma_2=-1,\sigma_3=0$, so
$l_4 \sigma_2^3 = -l_4 = 4$.
$$l_4 = -4.$$
\item[(e)]
$x^3-2x^2+x = x(x-1)^2$ has a discriminant equal to 0, and $\sigma_1 = 2,\sigma_2=1,\sigma_3=0$, so
$l_4+4l_5=0$, with $l_4=-4$.
$$l_5=1.$$
\item[(f)]
$x^3-2x^2-x+2 = x^2(x-2) - (x-2) = (x^2-1)(x-2)$ has roots $1,-1,2$. Its discriminant is
$\Delta = 2^2 1^2 3^2 = 36$, with $\sigma_1=2,\sigma_2=-1,\sigma_3=-2$.
Thus
\begin{align*}
36 &= l_1\sigma_3^2+l_2\sigma_1\sigma_2\sigma_3+l_3\sigma_1^3\sigma_3+l_4\sigma_2^3+l_5\sigma_1^2\sigma_2^2\\
&= 4l_1+4l_2-16l_3-l_4+4l_5\\
&=-4\times 27 +4 l_2-16l_3+4+4.\\
\end{align*}
With a division by 4,
$ l_2-4l_3 = \frac{36+ 4\times 27 - 8}{4} = 9 + 27 - 2 = 34.$
$$l_2 - 4 l_3 = 34.$$
\item[(g)]
$x^3-3x^2+3x-1 = (x-1)^3$ has a discriminant equal to 0, with $\sigma_1 = 3,\sigma_2=3,\sigma_3=1$.
\begin{align*}
0&=l_1+9l_2+27l_3+27l_4+81l_5\\
&=-27+9l_2+27l_3-27\times4+81.
\end{align*}
With a division by 9,
$l_2+3l_3 = 3+12-9=6$. So $l_2,l_3$ are solutions of the system of equations
$$\left\{
\begin{array}{ccc}
l_2-4l_3 & = & 34, \\
l_2+3l_3 & = & 6.
\end{array}
\right.
$$
Thus $l_2 = 18,l_3=-4$, and
$$\Delta = -27\sigma_3^2+18\sigma_1\sigma_2\sigma_3-4\sigma_1^3\sigma_3-4\sigma_2^3+\sigma_1^2\sigma_2^2.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 2.2.17}
{\it Use the Newton identities (2.22) to express the power sum $s_2,s_3,s_4$ in terms of the elementary symmetric polynomials $\sigma_1,\sigma_2,\sigma_3,\sigma_4$.
}
\begin{proof}
$s_r = x_1^r+x_2^r+\cdots+x_n^r$.
We suppose here that the number $n$ of variables is at least 4.
Then $$s_r = \sigma_1 s_{r-1}-\sigma_2 s_{r-2}+\cdots+(-1)^r\sigma_{r-1}s_1 + (-1)^{r-1} r \sigma_r.$$
\begin{align*}
s_1 &= \sigma_1,\\
\\
s_2 &= \sigma_1 s_1 - 2 \sigma_2\\
&= \sigma_1^2-2\sigma_2,\\
\\
s_3 &= \sigma_1 s_2 - \sigma_2s_1 +3\sigma_3\\
&=\sigma_1(\sigma_1^2 - 2 \sigma_2) - \sigma_2 \sigma_1 + 3 \sigma_3\\
&=\sigma_1^3-3\sigma_1\sigma_2+3\sigma_3,\\
\\
s_4 &= \sigma_1s_3 - \sigma_2 s_2 + \sigma_3 s_1 - 4 \sigma_4\\
&=\sigma_1(\sigma_1^3-3\sigma_1\sigma_2+3\sigma_3) - \sigma_2(\sigma_1^2-2\sigma_2)+ \sigma_3\sigma_1 - 4 \sigma_4\\
&=\sigma_1^4-4\sigma_1^2\sigma_2+4\sigma_1\sigma_3+2\sigma_2^2-4\sigma_4.
\end{align*}
Verification with Sage:
\begin{verbatim}
e = SymmetricFunctions(QQ).e()
e1, e2, e3, e4 = e([1]).expand(4),e([2]).expand(4),e([3]).expand(4),e([4]).expand(4)
R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = 'lex')
J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4)
G = J.groebner_basis()
s2 = x0^2 + x1^2 + x2^2 + x3^2
s3 = x0^3 + x1^3 + x2^3 + x3^3
s4 = x0^4 + x1^4 + x2^4 + x3^4
g2, g3, g4 = s2.reduce(G),s3.reduce(G),s4.reduce(G)
var('sigma_1,sigma_2,sigma_3,sigma_4')
h2 = g2.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h3 = g3.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
h4 = g4.subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
\end{verbatim}
\begin{verbatim}
h2, h3, h4
\end{verbatim}
$$\left(\sigma_{1}^{2} - 2 \, \sigma_{2}, \sigma_{1}^{3} - 3 \, \sigma_{1}
\sigma_{2} + 3 \, \sigma_{3}, \sigma_{1}^{4} - 4 \, \sigma_{1}^{2}
\sigma_{2} + 2 \, \sigma_{2}^{2} + 4 \, \sigma_{1} \sigma_{3} - 4 \,
\sigma_{4}\right).$$
\end{proof}
\paragraph{Ex. 2.2.18}
{\it Suppose that complex numbers $\alpha,\beta,\gamma$ satisfy the equations
\begin{align*}
\alpha+\beta+\gamma &= 3,\\
\alpha^2+\beta^2+\gamma^2 &= 5,\\
\alpha^3+\beta^3+\gamma^3 &=12.
\end{align*}
Show that $\alpha^n+\beta^n+\gamma^n \in \Z$ for all $n\geq 4$. Also compute $\alpha^4+\beta^4+\gamma^4$.
}
\begin{proof}
$\alpha,\beta,\gamma$ are the root of $$p = (x-\alpha)(x-\beta)(x-\gamma) = x^3-\sigma_1x^2+\sigma_2x-\sigma_3.$$
(We write $\sigma_i$ in place of $\sigma_i(\alpha,\beta,\gamma)$.)
By Exercise 17, with $n=3$ :
$$
\left\{
\begin{array}{cccl}
3 & = & s_1 &=\sigma_1 \\
5& = & s_2 &= \sigma_1^2 - 2 \sigma_2 \\
12&= & s_3& = \sigma_1^3-3\sigma_1 \sigma_2 + 3 \sigma_3.
\end{array}