-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter4.tex
1154 lines (822 loc) · 54.2 KB
/
Cox_Galois_Chapter4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\author{Richard Ganaye}
\refstepcounter{section} \refstepcounter{section} \refstepcounter{section}
\begin{document}
\section{Chapter 4}
\subsection{FIELDS}
\paragraph{Ex. 4.1.1}
{\it Let $\alpha \in L \setminus \{0\}$ be algebraic over a subfield $F$. Prove that $1/\alpha$ is also algebraic over $F$.
}
\begin{proof}
Suppose that $\alpha \in L \setminus \{0\}$ is algebraic over a subfield $F$ of $L$. Then there exists a polynomial $p = \sum\limits_{k=0}^d a_k x^k \in F[x]$, with $a_d \neq 0$, whose $\alpha$ is a root:
$$\sum\limits_{k=0}^d a_k \alpha^k = 0.$$
Dividing by $\alpha^d$, we obtain $\sum\limits_{k=0}^d a_k\left(\frac{1}{\alpha}\right)^{d-k} = 0$, which we can write
$\sum\limits_{i=0}^d a_{d-i}\left(\frac{1}{\alpha}\right)^{i} = 0$.
So $1/\alpha$ is a root of the polynomial $q = \sum\limits_{i=0}^d a_{d-i}x^{i} \in F[x]$, and $q\neq 0$ since $a_d \neq0$, thus $1/\alpha$ is algebraic over $F$.
\end{proof}
\paragraph{Ex. 4.1.2}
{\it Complete the proof of Lemma 4.1.3 by showing that if $f$ and $g$ are monic polynomials in $F[x]$ each of which divides the other, then $f=g$.
}
\begin{proof}
Suppose that $f,g \in F[x]$ are monic, and $f\mid g, g\mid f$.
$f = g h , h\in F[x]$ and $g = f l , l \in F[x]$, so $f = f hl$, where $f\neq 0$ since $f$ is monic, thus $hl=1$, and so $\deg(h)+ \deg(l)=0$, $\deg(h) = \deg(l) = 0$.
Therefore $h = \lambda \in F^*$, $f = \lambda g$. In particular, $f,g$ have the same degree $d$.
Write $f = \sum\limits_{k=0}^d a_k x^k, g = \sum\limits_{k=0}^d b_k x^k$.
As $f,g$ are monic, $a_d=b_d=1$, and $a_d = \lambda b_d$, so $\lambda=1$, and $f = g$.
Conclusion: If $f$ and $g$ are monic polynomials in $F[x]$ each of which divides the other, then $f=g$
\end{proof}
\paragraph{Ex. 4.1.3}
{\it Suppose that $F\subset L$ is a field extension and that $\alpha_1,\ldots,\alpha_n \in L$. Show that $F[\alpha_1,\ldots,\alpha_n]$ is a subring of $L$ and that $F(\alpha_1,\ldots,\alpha_n)$ is a subfield of $L$.
}
\begin{proof}
$\bullet$ By hypothesis, $F\subset L$ and $\alpha_1,\ldots,\alpha_n \in L$.
$1 \in F[\alpha_1,\ldots,\alpha_n],$ so $F[\alpha_1,\ldots,\alpha_n] \neq \emptyset$.
Let $x,y \in F[\alpha_1,\ldots,\alpha_n]$. By definition, there exist polynomials $p,q \in F[x_1,\ldots,x_n]$ such that
$$x = p(\alpha_1,\ldots,\alpha_n),\quad y = q(\alpha_1,\ldots,\alpha_n).$$
As $p-q,pq \in F[x_1,\ldots,x_n]$, and as $x-y = (p-q)(\alpha_1,\ldots,\alpha_n), xy = pq(\alpha_1,\ldots,\alpha_n)$, so $x-y \in F[\alpha_1,\ldots,\alpha_n], xy \in F[\alpha_1,\ldots,\alpha_n]$.
Conclusion: $F[\alpha_1,\ldots,\alpha_n]$ is a subring of $L$.
$\bullet$ The same argument, where we take rational fractions $p,q$ in place of polynomials show that $p,q \in F(x_1,\ldots,x_n) \Rightarrow p-q,pq \in F(x_1,\ldots,x_n)$, so $x-y = (p-q)(\alpha_1,\ldots,\alpha_n), xy = pq(\alpha_1,\ldots,\alpha_n) \in F(\alpha_1,\ldots,\alpha_n)$. Thus $F(\alpha_1,\ldots,\alpha_n)$ is a subring of $L$.
Moreover, if $x \in F(\alpha_1,\ldots,\alpha_n), x\neq 0$, then $x = \frac{p(\alpha_1,\ldots,\alpha_n)}{q(\alpha_1,\ldots,\alpha_n)}$, where $p,q \in F[x_1,\ldots,x_n]$, and $q(\alpha_1,\ldots,\alpha_n)\neq 0$. Since $x\neq 0$, we have also $p(\alpha_1,\ldots,\alpha_n) \neq 0$.
Hence $\frac{1}{x} = \frac{q(\alpha_1,\ldots,\alpha_n)}{p(\alpha_1,\ldots,\alpha_n)} \in F(\alpha_1,\ldots,\alpha_n)$.
Conclusion: $F(\alpha_1,\ldots,\alpha_n)$ is a subfield of $L$.
\end{proof}
\paragraph{Ex. 4.1.4}
{\it Complete the proof of Corollary 4.1.11 by showing that
$$F(\alpha_1,\ldots,\alpha_r)(\alpha_{r+1},\ldots,\alpha_n) \subset F(\alpha_1,\ldots,\alpha_n).$$
}
\begin{proof} $F(\alpha_1,\ldots,\alpha_r) \subset F(\alpha_1,\ldots,\alpha_n),\ 1\leq r \leq n$, since $F(\alpha_1,\ldots,\alpha_n)$ contains $F$ and $\alpha_1,\ldots,\alpha_r$, and since $F(\alpha_1,\ldots,\alpha_r)$ is the smallest subfield of $L$ containing $F$ and $\alpha_1,\ldots,\alpha_r$.
Moreover $F(\alpha_1,\ldots,\alpha_n)$ contains $\alpha_{r+1}, \ldots, \alpha_n$.
By Lemma 4.1.9, $F(\alpha_1,\ldots,\alpha_r)(\alpha_{r+1},\ldots,\alpha_n)$ is the smallest subfield of $L$ containing $F(\alpha_1,\ldots,\alpha_r)$ and $\alpha_{r+1},\ldots,\alpha_n$, thus
$$F(\alpha_1,\ldots,\alpha_r)(\alpha_{r+1},\ldots,\alpha_n) \subset F(\alpha_1,\ldots,\alpha_n).$$
From the reciprocal inclusion proved in section 4.1, we conclude that
$$F(\alpha_1,\ldots,\alpha_r)(\alpha_{r+1},\ldots,\alpha_n) = F(\alpha_1,\ldots,\alpha_n).$$
\end{proof}
\paragraph{Ex. 4.1.5}
{\it Prove carefully that $F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n] = F[\alpha_1,\ldots,\alpha_n]$.
}
\begin{proof}
$\bullet$ Let $\gamma \in F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n]$. Write $R = F[\alpha_1,\ldots,\alpha_{n-1}]$. By definition, there exists a polynomial $p = \sum_{k=0}^d a_k x_n^k \in R[x_n]$ such that $\gamma= p(\alpha_n)$, and for every $a_k \in R, 0 \leq k \leq d$, there exists $f_k \in F[x_1,\ldots,x_{n-1}]$ such that $a_k = f_k(\alpha_1,\ldots,\alpha_{n-1})$.
Thus $$\gamma = \sum\limits_{k=0}^d f_k(\alpha_1,\ldots,\alpha_{n-1})\alpha_n^k.$$
Let $f = \sum\limits_{k=0}^d f_k(x_1,\ldots,x_{n-1}) x_n^k$. Then $f \in F[x_1,\ldots,x_n]$, and $\gamma = f(\alpha_1,\ldots,\alpha_n)$, so $\gamma \in F[\alpha_1,\ldots,\alpha_n]$. We have proved
$$F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n] \subset F[\alpha_1,\ldots,\alpha_n].$$
$\bullet$ Conversely, let $\gamma \in F[\alpha_1,\ldots,\alpha_n]$.
There exists $f \in F[x_1,\ldots,x_n]$ such that $x = f(\alpha_1,\ldots,\alpha_n)$.
As $F[x_1,\ldots,x_n] = F[x_1,\ldots,x_{n-1}][x_n]$, $f = \sum\limits_{k=0}^d f_k(x_1,\ldots,x_{n-1})x_n^k$, where $f_k \in F[x_1,\ldots,x_{n-1}]$.
So $\gamma = \sum\limits_{k=0}^d f_k(\alpha_1,\ldots,\alpha_{n-1})\alpha_n^k = \sum\limits_{k=0}^d a_k x_n^k$, with $a_k = f_k(\alpha_1,\ldots,\alpha_{n-1}) \in F[\alpha_1,\ldots,\alpha_{n-1}]=R$.
Let $p = \sum_{k=0}^d a_k x_n^k$. Then $p \in R[x_n]$ and $x = p(\alpha_n)$, thus $x \in R[\alpha_n] = F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n]$.
The reciprocal inclusion
$$F[\alpha_1,\ldots,\alpha_n] \subset F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n]$$
is proved, and so
$$F[\alpha_1,\ldots,\alpha_n] =F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n].$$
Note: in an alternative way, we could write a lemma analogous to Lemma 4.1.9 and show that $F[\alpha_1,\ldots,\alpha_n]$ is the smallest subring of $L$ containing $ \alpha_1,\ldots,\alpha_n$ (where $L$ is a ring containing $F$ and $\alpha_1,\ldots,\alpha_n$), and prove as in Exercise 4 that
$$F[\alpha_1,\ldots,\alpha_r][\alpha_{r+1},\ldots,\alpha_n] = F[\alpha_1,\ldots,\alpha_n].$$
\end{proof}
\paragraph{Ex. 4.1.6}
{\it Suppose that $F\subset L$ and that $\alpha_1,\ldots,\alpha_n\in L$ are algebraically independent over $F$ (as defined in the Mathematical Notes to section 2.2). Prove that there is an isomorphism of fields
$$F(\alpha_1,\ldots,\alpha_n) \simeq F(x_1,\ldots,x_n),$$
where $F(x_1,\ldots,x_n)$ is the field of rational functions in variables $x_1,\ldots,x_n$.
}
\begin{proof}
Let $f \in F(x_1,\ldots,x_n)$, $f =p/q,\ p,q \in F[x_1,\ldots,x_n], q \neq 0$. Since $\alpha_1,\ldots,\alpha_n$ are algebraically independent over $F$, $q(\alpha_1,\ldots,\alpha_n) \neq 0$. We can so define
\begin{align*}
\varphi : F(x_1,\ldots,x_n) &\to F(\alpha_1,\ldots,\alpha_n)\\
f = p/q &\mapsto f(\alpha_1,\ldots,\alpha_n) = p(\alpha_1,\ldots,\alpha_n)/q(\alpha_1,\ldots,\alpha_n).
\end{align*}
(this quotient doesn't depend on the choice of the representative $p/q$ of $f$).
$\varphi$ is a ring homomorphism.
By definition of $F(\alpha_1,\ldots,\alpha_n)$, $\varphi$ is surjective.
Let $f = p/q \in F(x_1,\ldots,x_n)$, with $p,q \in F[x_1,\ldots,x_n], q\neq 0$. If $f \in \ker(\varphi)$, then $p(\alpha_1,\ldots,\alpha_n)/q(\alpha_1,\ldots,\alpha_n) =0$, thus $p(\alpha_1,\ldots,\alpha_n)=0$. Since $\alpha_1,\ldots,\alpha_n$ are algebraically independent, $p=0$. Consequently $\ker(\varphi) = \{0\}$, and so $\varphi$ is a ring isomorphism between two fields: it is a field isomorphism.
Conclusion: If $\alpha_1,\ldots,\alpha_n \in L$ are algebraically independent over $F$, then
$$F(\alpha_1,\ldots,\alpha_n) \simeq F(x_1,\ldots,x_n).$$
\end{proof}
\paragraph{Ex. 4.1.7}
{\it In the proof of Proposition 4.1.14, we used the quotient ring $F[x]/\langle p\rangle$ to show that $F[\alpha]$ is a field when $\alpha$ is algebraic over $F$ with minimal polynomial $p \in F[x]$. Here, you will prove that $F[\alpha]$ is a field without using quotient rings. Since we know that $F[\alpha]$ is a ring, it suffices to show that every nonzero element $\beta \in F[\alpha]$ has a multiplicative inverse in $F[\alpha]$. So pick $\beta \ne 0$ in $F[\alpha]$ Then $\beta = g(\alpha)$ for some $g \in F[x]$.
\begin{enumerate}
\item[(a)] Show that $g$ and $p$ are relatively prime in $F[x]$.
\item[(b)] By part (a) and the Euclidean algorithm, we have $Ap+Bg = 1$ for some $A,B \in F[x]$. Prove that $B(\alpha) \in F[\alpha]$ is the multiplicative inverse of $g(\alpha)$.
\end{enumerate}
Do you see how this exercise relates to Exercise 5 of section 3.1?
}
\begin{proof}
As in Proposition 4.1.14, we assume that $F\subset L$ is a field extension, and that $\alpha \in L$. Suppose that $\alpha\in L$ is algebraic over $F$, where $p \in F[x]$ is the minimal polynomial of $\alpha$ over $F$, and $\beta \in F[\alpha],\beta \neq 0$.
There exists $g \in F[x]$ such that $\beta = g(\alpha)$.
\begin{enumerate}
\item[(a)] The minimal polynomial $p$ of $\alpha$ is irreducible over $F$ (Prop. 4.1.5).
Let $u\in F[x]$ such that $u \mid p, u \mid g$. Then
$p = uq,\ q\in F[x]$, and since $p$ is irreducible over $F$, $u$ or $q$ is a constant of $F^*$.
If $q =\lambda \in F^*$, then $u = \lambda^{-1} p $ and $p$
divides $u$, which divides $g$, thus $p$ divides $g$. In this case, since $p(\alpha) = 0$, $\beta = g(\alpha) = 0$, in contradiction with the hypothesis $\beta \neq 0$.
So $u = \mu \in F^*$ , $u \mid 1$. Consequently, for all $u \in F[x]$, $(u \mid p, u \mid g) \Rightarrow u\mid 1$: $p,g$ are relatively prime.
\item[(b)] Then there exists a B\'ezout's relation between these two polynomials:
$$Ap + Bg = 1, \ A,B \in F[x].$$
The evaluation of these polynomials in $\alpha$, since $p(\alpha)=0$, gives
$$B(\alpha) g(\alpha) = 1, B(\alpha) \in F[\alpha]$$
So $B(\alpha)$ is the multiplicative inverse of $\beta = g(\alpha)\neq 0$ in $F[\alpha]$: $F[\alpha]$ is a field.
Note: We have proved in Exercise 3.5.1 that $F[x]/\langle f\rangle$, where $f$ is irreducible over $F$, is a field with the same argumentation. Here $f = p$ is the minimal polynomial of $\alpha$ over $F$, so it is irreducible over $f$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.1.8}
{\it If a polynomial is irreducible over a field $F$, it may or may not remain irreducible over a large field. Here are examples of both types of behavior.
\begin{enumerate}
\item[(a)] Prove that $x^2-3$ is irreducible over $\Q(\sqrt{2})$.
\item[(b)] In Example 4.1.7, we showed that $x^4 -10x^2+1$ is irreducible over $\Q$ (it is the minimal polynomial of $\alpha = \sqrt{2}+\sqrt{3}$). Show that $x^4-10x^2+1$ is not irreducible over $\Q(\sqrt{3})$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]$x^2-3$ is irreducible over $\mathbb{Q}$. We show that it remains irreducible over $\mathbb{Q}[\sqrt{2}]$.
Suppose on the contrary that $f$ is reducible over $F$: $f = x^2 - 3 = u v,\ u v \in \mathbb{Q}[\sqrt{2}][x]$, where $u,v$ are nonconstant polynomials. Then $\deg(u)\geq 1, \deg(v) \geq 1$, and as $\deg(u) + \deg(v) = \deg(f) = 2$, $\deg(u) = \deg(v)=1$,
$$u = ax+b,\ a,b\in \mathbb{Q}[\sqrt{2}], a\neq 0.$$
Then $\alpha = -b/a \in \mathbb{Q}[\sqrt{2}]$ is a root of $u$, thus is a root of $f = x^2-3$. Since $\sqrt{2}^{2n} = 2^n$ and $\sqrt{2}^{2n+1} = 2^n \sqrt{2}$, every element of $\mathbb{Q}[\sqrt{2}]$ is of the form $c+ d\sqrt{2} , \ c,d \in \mathbb{Q}$.
We should have $\alpha = c + d \sqrt{2} = \pm \sqrt{3}. $
Then $$\alpha^2 = c^2+2d^2 +2cd\sqrt{2}=3.$$
If $cd\neq 0$, $\sqrt{2} = (c^2+2d^2 -3)/(2cd) \in \mathbb{Q}$, in contradiction with the irrationality of $\sqrt{2}$. Thus $c=0$ or $d=0$.
$d=0$ gives $\sqrt{3} = \pm c \in \mathbb{Q}$: this is in contradiction with the irrationality of $\sqrt{3}$.
$c=0$ implies $\sqrt{\frac{3}{2}} = \pm d \in \mathbb{Q}$. But then $\sqrt{\frac{3}{2}} =\frac{p}{q}, (p,q) \in \mathbb{Z} \times \mathbb{N}^*, p\wedge q=1$.
$3q^2 = 2 p^2$, $q^2 \mid 2 p^2$ and $q^2 \wedge p^2 = 1$. By Gauss Lemma, $q^2 \mid 2, q\in \mathbb{N}^*$, hence $q=1, 3 = 2p^2$, thus $3$ is even: this is absurd.
Conclusion: $x^2-3$ is irreducible $\mathbb{Q}[\sqrt{2}]$.
\item[(b)]
\begin{align*}
f&= [(x-\sqrt{2} - \sqrt{3})(x+\sqrt{2} -\sqrt{3})] [(x-\sqrt{2} + \sqrt{3})(x+\sqrt{2} + \sqrt{3})]\\
&=[(x-\sqrt{3})^2-2][(x+\sqrt{3})^2-2]\\
&= (x^2 -2\sqrt{3} x +1)(x^2 -2\sqrt{3} x +1)\\
&= (x^2+1)^2 - (2\sqrt{3}x)^2\\
&=x^4 -10x^2 +1
\end{align*}
The equality $f = x^4 -10x^2 +1 = (x^2 -2\sqrt{3} x +1)(x^2 -2\sqrt{3} x +1)$ show that $f$ is not irreducible over $\mathbb{Q}[\sqrt{3}]$.
{\bigskip}
Factorisation with Sage:
\begin{verbatim}
K = NumberField(x^2-3, 'a');L.<X> = PolynomialRing(K)
p = X^4-10*X^2+1
factor(p)
\end{verbatim}
$$(X^2-2aX+1).(X^2+2aX+1).$$
\end{enumerate}
\end{proof}
\subsection{IRREDUCIBLE POLYNOMIALS}
\paragraph{Ex. 4.2.1}
{\it This exercise will study the Lagrange interpolation formula. Suppose that $F$ is a field and that $b_0,\ldots,b_d,c_0,\ldots,c_d \in F$, where $b_0,\ldots,b_d$ are distinct and $d\geq 1$. Then consider the polynomial
$$g(x) = \sum_{i=0}^d c_i \prod_{j\ne i} \frac{x-b_j}{b_i-b_j} \in F[x].$$
\begin{enumerate}
\item[(a)] Explain why $\deg(g) \leq d$, and give an example for $F=\R$ and $d=2$ where $\deg(g)<2$.
\item[(b)] Show that $g(b_i) = c_i$ for $i=0,\ldots,d$.
\item[(c)] Let $h$ be a polynomial in $F[x]$ with $\deg(h) \leq d$ such that $h(b_i) = c_i$ for $i=0,\ldots,d$. Prove that $h=g$.
\end{enumerate}
}
\begin{proof}
Let $p_i(x) = \prod\limits_{j\neq i} \frac{x-b_j}{b_i-b_j}\ , 0 \leq i \leq d$.
Then $g(x) = \sum\limits_{i=0}^d c_i p_i(x)$.
\begin{enumerate}
\item[(a)]
$p_i$ is product of $d$ linear polynomials, thus $\deg(p_i) = d$. Consequently $\deg(g) \leq \max(\deg(p_0), \ldots, \deg(p_d))=d$:
$$\deg(g)\leq d.$$
This inequality can be a strict inequality: We show such an example for $d=2$.
$(b_0,c_0) = (0,0), (b_1,c_1) = (1,1), (b_2,c_2) = (2,2)$.
Then $p_0(x) = \frac{1}{2}(x-1)(x-2),p_1(x) = -x(x-2),p_2(x) = \frac{1}{2}x(x-1)$. So
\begin{align*}
g(x)&= 0.p_0(x)+1.p_1(x)+2.p_2(x)\\
&=-x(x-2)+x(x-1)\\
&=x.
\end{align*}
Here $\deg(g)=1 < d=2$.
\item[(b)] $p_i(b_i)=1$ and $p_i(b_j)=0$ if $j\neq i$, so $p_i(b_j) =\delta_{i,j}$.
$$g(b_j) = \sum\limits_{i=0}^dc_i \delta_{i,j} = c_j, \ j=0,\ldots,d.$$
The graph of the polynomial $g$ with degree at most $d$ contains the $d+1$ points $(b_0,c_0), \ldots,(b_d,c_d)$.
\item[(c)]
Suppose that the polynomial $h \in F[x]$ satisfies the same conditions as $g$:
\begin{center}
$h(b_i) = c_i,\ 0\leq i\leq d$, with $\deg(h)\leq d$. \end{center}
Let $p = g-h$. Then $\deg(p) \leq \max(\deg(g),\deg(h)) \leq d$, and $p(b_i) = g(b_i) - h(b_i) = c_i-c_i=0, i = 0,\ldots,d$.
$p$ is a polynomial with degree at most $d$ and has $d+1$ roots, hence $p=0$, so
$$g=h.$$
Conclusion: There exists one and only one polynomial $g$ with degree at most $d$ such that $g(b_i) = c_i,\ i=0,\ldots,d$ (where $b_0,\ldots,b_d$ are distinct, $d\geq 1$)
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.2.2}
{\it This exercise deals with Sch\"onemann's version of the irreducibility criterion.
\begin{enumerate}
\item[(a)] Let $f(x) = (x-a)^n + pF(x)$, where $a\in \Z$ and $F(x) \in \Z[x]$ satisfy $\deg(F) \leq n$, and $p\nmid F(a)$. Prove that $f$ is irreducible over $\Q$.
\item[(b)] More generally, let $g(x) \in \Z[x]$ be irreducible modulo $p$ (i.e., reducing its coefficients modulo $p$ gives an irreducible polynomial in $\F_p[x]$). Then let $f(x) = g(x)^n + pF(x)$, where $F[x] \in \Z[x]$ and $g(x)$ and $F(x)$ are relatively prime modulo $p$. Also assume that $\deg(F) \leq n \deg(g)$. Prove that $f$ is irreducible over $\Q$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $f(x) = (x-a)^n + pF(x)$, where $a\in \mathbb{Z}$, and $p$ is prime. We show that $f$ is irreducible. If we suppose on the contrary that $f$ is reducible over $\Q$, then by Corollary 4.2.1 $$f = g h,\ g,h \in \mathbb{Z}[x], k = \deg(g)\geq 1,l=\deg(h) \geq 1.$$
As $\deg(F) \leq n$, $\deg(f)\leq n$, and as the coefficient of $x^n$ in $f$ is congruent to 1 modulo $p$, it is nonzero, so $\deg(f) = n$, and $k+l=n$.
Write $\overline{f} \in \mathbb{F}_p[x]$ the reduction modulo $p$ of $f$, and write $\overline{a} = [a]_p$ the class of $a\in \mathbb{Z}$ modulo $p$.
The application
\begin{align*}
\varphi : \mathbb{Z}[x] &\to \mathbb{F}_p[x]\\
q= \sum_{i=0}^d a_i x^i &\mapsto \overline{q} = \sum_{i=0}^d \overline{a_i} x^i
\end{align*}
is a ring homomorphism, so $\overline{f} = \overline{gh} = \overline{g}\,\overline{h}$.
Thus $$\overline{f} = (x- \overline{a})^n = \overline{g}\overline{h}$$
As $\deg(\overline{g}) \leq \deg(g), \deg(\overline{h}) \leq \deg(h)$ and as $\deg(\overline{g})+\deg(\overline{h}) = \deg((x- \overline{a})^n)=n = \deg(g)+ \deg(h)$, we conclude that $\deg(\overline{g}) = \deg(g) = k, \deg(\overline{h})=\deg(h)=l$.
$x-\overline{a}$ is irreducible in $\mathbb{F}_p[x]$, as every polynomial of degree 1. $\mathbb{F}_p$ being a field, the unicity of the decomposition in irreducible factors in the principal ideal domain $\mathbb{F}_p[x]$ shows that the only irreducible factors of $\overline{g}, \overline{h}$ are associate to powers of $x-\overline{a}$:
$$\overline{g} = \overline{u}( x-\overline{a})^k, \overline{h} = \overline{v}( x-\overline{a})^l, \ \overline{u},\overline{v} \in \mathbb{F}_p^*.$$
Hence there exist polynomials $G,H \in \mathbb{Z}[x]$ such that
$$g = u(x-a)^k + p G(x), h =v(x-a)^l + pH(x).$$
Consequently
$$f(x) = (x-a)^n + pF(x) = [u(x-a)^k + p G(x)][v(x-a)^l + pH(x)].$$
As $k\geq 1, l \geq 1$, $(x-a)^k$ and $(x-a)^l$ have $a$ as a root, thus
$$f(a) = pF(a) = p^2 G(a) H(a).$$
Then $F(a) = p G(a)H(a)$ is divisible by $p$, in contradiction with the hypothesis $p\nmid F(a)$.
Conclusion: $f\in \mathbb{Z}[x]$ is not a product of nonconstant polynomials in $\mathbb{Z}[x]$. By Corollary 4.2.1, $f$ is irreducible over $\mathbb{Q}$.
\item[(b)]
More generally, suppose that $u \in \mathbb{Z}[x]$ is such that $\overline{u}$ is irreducible over $\F_p$, and that $f(x) = u(x)^n + pF(x)$, $F(x) \in \mathbb{Z}[x], \overline{u}\wedge \overline{F} =1$ and $\deg(F) \leq n \deg(u)$.
We must suppose also that the leading coefficient of $u$ is not divisible by $p$, so $\deg(\overline{u}) = \deg(u) $.
Then $\deg(f) \leq n \deg(u)$, and the coefficient of the monomial of degree $n \deg(u)$ being nonzero modulo $p$, $\deg(f) = n \deg(u)=n\deg(\overline{u}) = \deg(\overline{f})$.
If we suppose $f$ reducible, then $f = gh, k = \deg(g)\geq 1, l = \deg(h) \geq 1$, which implies as in (a)
$$\overline{f} = \overline{u}^n = \overline{g}\overline{h}.$$
Since $\overline{u}$ is irreducible,
$$\overline{g} = \overline{c} \, \overline{u}^i, \overline{h} =\overline{d} \, \overline{u}^j,\ i,j \in \mathbb{N}, \ \overline{c}, \overline{d} \in \F_p$$
As $\deg(\overline{g}) \leq \deg(g), \deg(\overline{h}) \leq \deg(g)$, and $\deg(\overline{g}) + \deg(\overline{h}) = \deg(\overline{f}) = \deg(f) = \deg(g) + \deg(h)$, we conclude $\deg(\overline{g}) = \deg(g)\geq 1, \deg(\overline{h})= \deg(h)\geq 1$. Consequently $i\geq 1, j \geq 1$.
There exist polynomials $G,H \in \mathbb{Z}[x]$ such that
$$g= cu^i + p G, h = du^j+pH.$$
Thus
$$f = u^n +pF = (cu^i+pG)(du^j+pH).$$
As $i\geq 1, j\geq 1$, $u$ divides $pF - p^2 GH$ in $\mathbb{Z}[x]$, so there exists $v \in \mathbb{Z}[x]$ such that
$$uv = p(F - pGH).$$
As $\overline{u}\, \overline{v} = 0$, and $ \overline{u} \neq 0$ in the integral domain $\F_p[x]$, then $\overline{v} = 0$: all the coefficients of $v$ are divisible by $p$, thus $w= v/p \in \mathbb{Z}[x]$, and
$$uw = F-pGH,\qquad \overline{u}\, \overline{w} = \overline{F}.$$
Hence $\overline{u} \mid \overline{F}$, in contradiction with the hypothesis $\overline{u} \wedge \overline{F} = 1$.
$f = u^n +pF$ is so irreducible.
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.2.3}
{\it Use part (a) of Exercise 2 with $a=1$ to give another proof of Proposition 4.2.5.
}
\begin{proof}
{\bf Lemma}: {\it If $p$ is prime, then for all $k, 0\leq k \leq p-1$,
$$\binom{p-1}{k} \equiv (-1)^k \pmod p.$$}
Proof by induction on $k$.
$\bullet$ If $k=0$, $\binom{p-1}{0} = 1 = (-1)^0$.
$\bullet$ Suppose that this property is true for $k-1$ ($1\leq k \leq p-1$):
$$\binom{p-1}{k-1} \equiv (-1)^{k-1} \pmod p$$
Then, as $1\leq k \leq p-1$, we know that $\binom{p}{k} \equiv 0\ \pmod p$, thus from Pascal's formula,
$$\binom{p-1}{k} = \binom{p}{k} - \binom{p-1}{k-1} \equiv 0 - (-1)^{k-1} \equiv (-1)^{k} \pmod p,$$
which concludes the induction. $\qed$
If $p = 2$, $\Phi_2 = 1+x$ is irreducible. Suppose now that $p$ is an odd prime.
Applying the lemma, we obtain
\begin{align*}
\Phi_p(x) - (x-1)^{p-1} &= \sum_{k=0}^{p-1} x^k -\sum_{k=0}^{p-1}(-1)^{p-1-k} \binom{p-1}{k} x^k\\
&=\sum_{k=0}^{p-1} \left[ 1 - (-1)^{p-1-k} \binom{p-1}{k} \right] x^k\\
&=\sum_{k=0}^{p-1} \left[ 1 - (-1)^{k} \binom{p-1}{k} \right] x^k\\
&=p \sum_{k=0}^{p-1} a_k x^k \qquad (a_k \in \Z)
\end{align*}
since every coefficient $\left[ 1 - (-1)^{k} \binom{p-1}{k} \right]$ is divisible by $p$, of the form $p a_k, a_k \in \mathbb{Z}$.
Consequently $$\Phi_p(x) = (x-1)^{p-1} + pF(x),\quad F(x) = \sum_{k=0}^{p-1} a_k x^k \in \mathbb{Z}[x],\quad \deg(F) \leq p-1.$$
Moreover
$$F(1) = \sum_{k=0}^{p-1} a_k = \sum_{k=0}^{p-1} \frac{ 1 - (-1)^{k} \binom{p-1}{k} }{p} = 1 - \frac{1}{p} \sum_{k=0}^{p-1}(-1)^{k} \binom{p-1}{k} = 1 - \frac{1}{p}(1-1)^{p-1} = 1.$$
$F(1)\not \equiv 0 \pmod p$. By Exercise 2, $\Phi_p$ is irreducible.
\end{proof}
\paragraph{Ex. 4.2.4}
{\it For each of the following polynomials, use a computer to determine whether it is irreducible over the given field.
\be
\item[(a)] $x^4 + x^3 + x^2 + x + 2$ over $\Q$.
\item[(b)] $3x^6 + 6 x^5 + 9x^4 + 2x^3 + 3x^2 + 1$ over $\Q$ and $\Q(\sqrt[3]{2})$.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
With Sage, the instructions
\begin{verbatim}
factor(x^4+x^3+x^2+x+2)
factor(3*x^6+6*x^5+9*x^4+2*x^3+3*x^2+1);
\end{verbatim}
give the same polynomials.
So $x^4+x^3+x^2+x+2$ and $3x^6+6x^5+9x^4+2x^3+3x^2+1$ are irreducible over $\Q$.
\item[(b)]
The instructions
\begin{verbatim}
K = NumberField(x^3-2, 'a'); L.<X> = PolynomialRing(K)
p = 3*x^6 + 6*x^5 + 9*x^4 + 2*x^3 + 3*x^2 + 1
u = factor(p)
\end{verbatim}
give the following decomposition, where $a=\sqrt[3]{2}$:
$3x^6+6x^5+9x^4+2x^3+3x^2+1 =$
$\frac{1}{3} (3x^2 + (-a^2 + a + 2)x + a^2 - a + 1)\times$
$(3x^4 + (a^2 - a + 4)x^3 + (a + 4)x^2 + (-a^2 - a)x + a + 1)$.
Thus $3x^6+6x^5+9x^4+2x^3+3x^2+1$ is not irreducible over $\Q(\sqrt[3]{2})$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.2.5}
{\it Find the minimal polynomial of the 24th root of unity $\zeta_{24}$ as follows.
\begin{enumerate}
\item[(a)] Factor $x^{24} - 1$ over $\Q$.
Determine which of the factors is the minimal polynomial of $\zeta_{24}$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] The instruction Sage 'factor' gives the decomposition
$x^{24}-1 = (x^8 - x^4 + 1)(x^4 - x^2 + 1)(x^4 + 1)(x^2 + x + 1)(x^2 - x +
1)(x^2 + 1)(x + 1)(x - 1)$
\item[(b)]
The Sage instructions
\begin{verbatim}
zeta = exp(2*i*pi/24)
(x^8 - x^4 + 1).subs(x=zeta).expand()
\end{verbatim}
return the value 0.
Thus $\zeta _{24} = e^{2i \pi}/24$ is a root of $x^8-x^{4}+1$, irreducible over $\mathbb{Q}$ by (a).
$x^8 - x^4+1$ is so the minimal polynomial over $\mathbb{Q}$ of $\zeta_{24}$.
Verification: $\zeta_{24}^8 - \zeta_{24}^4+1 = e^{2i\pi/3}-e^{i\pi/3}+1 = \omega+\omega^2+1 = 0$.
Note: If we know the cyclotomic polynomials, since $3$ is prime:
\begin{align*}
\Phi_3(x) &= x^2+x+1,\\
\Phi_6(x) &= \Phi_3(-x) = x^2-x+1,\\
\Phi_{24}(x) &= \Phi_{\mathrm{rad}(24)} (x^{\frac{24}{\mathrm{rad}(24)}}) = \Phi_6(x^4) = x^8 - x^4+1,
\end{align*}
($24 = 3\times2^3, \mathrm{rad}(24) = 3\times 2 = 6$).
\end{enumerate}
$\Phi_{24}$ is the minimal polynomial of $\zeta_{24}$ over $\mathbb{Q}$.
The decomposition in (a) is the decomposition
$$x^{24}-1 =\prod_{d\mid 24 } \Phi_d(x) = \Phi_{24} \,\Phi_{12} \,\Phi_{8} \,\Phi_{3}\, \Phi_{6} \,\Phi_{4} \,\Phi_{2}\, \Phi_{1}.$$
\end{proof}
\paragraph{Ex. 4.2.6}
{\it Let $F$ be a finite field. Explain why there is an algorithm for deciding whether $f \in F[x]$ is irreducible.
}
\begin{proof}
If $f$ is reducible, of degree $n$, $f=gh, g,h\in F[x]$, where $1\leq \deg(g)\leq \deg(h) \leq n-1$.
As $\deg(g)+\deg(h) = n$, $2 \deg(g) \leq n, \deg(g) \leq n/2$.
If we multiply $g,h$ by appropriate constants, we can suppose that $g$ is monic.
So $f$ is reducible iff there exists a monic factor of $f$ of degree $d$, $d, 1 \leq d \leq n/2$.
As $F$ is finite, with cardinality $q$, we can list all monic polynomials of degree $k$, of the form $p=x^k+a_{k-1}x^{k-1}+\cdots+a_0$, by listing all $q^k$ $k$-plets $(a_0,\cdots,a_{k-1})$, and test the divisibility of $f$ by each such polynomial, for every value of $k, 1\leq k \leq n/2$.
If $f$ is irreducible, the number of polynomial division to prove the irreducibility is so
$$q+q^2+\cdots q^r= q\,\frac{q^{r}-1}{q-1}, \qquad r = \lfloor n/2 \rfloor.$$
\end{proof}
\paragraph{Ex. 4.2.7}
{\it For each of the following polynomials, determine, without using a computer, whether it is irreducible over the given field.
\begin{enumerate}
\item[(a)] $x^3+x+1$ over $\F_5$.
\item[(b)] $x^4+x+1$ over $\F_2$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
$f= x^3+x+1$ being of degree 3, it is reducible iff it has a linear factor (see Ex. 6), iff it has a root in $\mathbb{F}_5$, which request 5 verifications:
$f(0)=1, f(1)=3, f(2)=1, f(-2) = 1, f(-1) = -1$, all nonzero, so $f$ is irreducible over $\F_5$.
\item[(b)]
$f = x^4+x+1$ has no root in $\F_2$.
It is so sufficient to test the divisibility of $f$ by quadratic polynomials, which are
$$x^2,x^2+1, x^2+x, x^2+x+1.$$
$x^2$ and $x^2+x$ are not irreducible, can be excluded of the list. It remains to test two divisions by
$$x^2+1,x^2+x+1$$.
\begin{align*}
x^4+x+1 &= (x^2+1)(x^2+1)+x\\
&=(x^2+x+1)(x^2+x)+1
\end{align*}
The remainders of these divisions being nonzero, $x^4+x+1$ is so irreducible over $\mathbb{F}_2$.
Note: the factorization of $\Phi_{15}$ over the field $\mathbb{F}_2$, gives the list of irreducible polynomials over $\mathbb{F}_2$ of degree 4.
\begin{verbatim}
S.<t> = GF(2)['t']
phi15 =( (x^15-1)*(x-1)*(x-1))/((x-1)*(x^3-1)*(x^5-1)); phi15
x^8 + x^7 + x^5 + x^4 + x^3 + x + 1
factor(phi15)
(x^4 + x + 1) * (x^4 + x^3 + 1)
\end{verbatim}
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.2.8}
{\it Let $a\in \Z$ be a product of distinct prime numbers. Prove that $x^n-a$ is irreducible over $\Q$ for any $n\geq 1$. What does this imply about $\sqrt[n]{a}$ when $n\geq 2$.
}
\begin{proof}
Let $a= p_1\cdots p_r$ a product of distinct prime numbers.
We show that $f = x^n -a$ is irreducible over $\Q$. Suppose on the contrary that $f = x^n -a$ is reducible. By Gauss Lemma $f$ has a monic factor $g \in \mathbb{Z}[x], 1\leq \deg(g) <n$.
The decomposition of $f$ in $\C[x]$ is
$$f =\prod_{\zeta \in \mathbb{U}_n} ( x - \zeta \sqrt[n]{a}).$$
$\mathbb{C}[x]$ being a unique factorization domain, $$g = \prod_{\zeta \in A} ( x - \zeta \sqrt[n]{a}),\ \emptyset \neq A \varsubsetneq \mathbb{U}_n,$$
where $\vert A \vert =s$ satisfies $1\leq s <n$.
As $g \in \mathbb{Z}[x]$, the constant term is an integer $N$, given by
$$N = \xi \sqrt[n] {a}^s,$$ where $\xi = \prod_{\zeta \in A} \zeta \in \mathbb{U}_n$ is a $n$-th root of unity.
Moreover $\xi = N/\sqrt[n] {a}^s \in \mathbb{R}$, thus $\xi = \pm1$, and $\sqrt[n] {a}^s = \pm N =M\in \mathbb{Z}$.
But then $p_1^s\cdots p_r^s = M^n$.
The unicity of the decomposition in prime factors shows that the $p_i$ are the only prime divisors of $M$: $M = p_1^{k_1}\cdots p_r^{k_r}$, and $s = nk_i, i=1,\ldots,r$.
Thus $n\mid s$, in contradiction with $1\leq s <n$.
Conclusion: $x^n -a$ is irreducible over $\mathbb{Q}$, if $a = p_1\cdots p_r$ is a product of distinct prime numbers.
\bigskip
The easy part of Proposition 4.2.6 shows that $x^n-a, n\geq 2$ has no root in $\mathbb{Q}$, in other words $\sqrt[n]{a}$ is irrational, for every $a$ being a product of distinct prime numbers.
\end{proof}
\paragraph{Ex. 4.2.9}
{\it Let $k$ be a field, and let $F = k(t)$ be the field of rational functions in $t$ with coefficients in $k$. Then consider $f = x^p-t \in F[x]$, where $p$ is prime. By Proposition 4.2.6, $f$ is irreducible provided we can show that $f$ has no roots in $F$. Prove this.
}
\begin{proof}
If $f$ has a root in $k(t)$, then there exists a rational function $u/v,\ u,v \in k[t], u \wedge v = 1$ such that
$$t =\left( \frac{u(t)}{v(t}\right)^p,$$
which is equivalent to the equality in $k[t]$:
$$u(t)^p = t v(t)^p.$$
As $u\wedge v=1$, then $u \wedge v^p=1$, and $u$ divides $t v^p$, thus $u$ divides $t$.
Since $t$ is irreducible (as every polynomial of degree 1), $u(t) = \lambda$, or $u(t) = \lambda t$, $\lambda \in k^*$.
The case $u(t) = \lambda$ implies $t \mid 1$, which is false.
The case $u(t) = \lambda t$ gives $\lambda^p t^p = t v(t)^p$, thus $\lambda^p t^{p-1} = v(t)^p$, and as $p>1$, $t$ divides also $v$, which contradicts $u \wedge v=1$.
Conclusion: If $p$ is prime, $f =x^p -t$ is irreducible over $F= k(t)$.
\end{proof}
\subsection{THE DEGREE OF AN EXTENSION}
\paragraph{Ex. 4.3.1}
{\it In (4.9) we represented elements of $F(\alpha)$ uniquely using remainders on division by the minimal polynomial of $\alpha$. In the exercise you will adapt the proof of Proposition 4.3.4 to the case of quotient rings. Suppose that $f \in F[x]$ has degree $n>0$. Prove that every coset on $F[x]/\langle f \rangle$ can be written as
$$a_0+a_1x+\cdots+a_{n-1} x^{n-1} + \langle f \rangle,$$
where $a_0,a_1,\ldots,a_{n-1} \in F$ are unique.
}
\begin{proof}
Let $f \in F[x],\deg(f) = n>0$, and $y \in F[x]/\langle f \rangle$. There exists $g \in F[x]$ such that $y = g +\langle f \rangle$.
The division of $g$ by $f$ gives
$$g = qf+r,\ \deg(r) < \deg(f)=n.$$
Thus $g-r =qf \in \langle f \rangle$, and consequently $y=g+\langle f \rangle = r+ \langle f \rangle$.
As $\deg(r)<n$, $r = a_0+a_1x+\cdots+a_{n-1}x^{n-1},\ a_0,a_1,\ldots,a_{n-1} \in F$.
Every $y \in F[x]/\langle f \rangle$ can be written as
$$y = a_0+a_1x+\cdots+a_{n-1}x^{n-1} + \langle f \rangle, \ a_0,a_1,\ldots,a_{n-1} \in F.$$
{\bigskip}
Unicity:
Suppose that $y \in g+\langle f \rangle$ is written as
\begin{align*}
y &= a_0+a_1x+\cdots+a_{n-1}x^{n-1} + \langle f \rangle\\
&=b_0+b_1x+\cdots+b_{n-1}x^{n-1} + \langle f \rangle\\
(a_i, b_i \in F, i = 0,\ldots,n-1).
\end{align*}
Then there exist two polynomials $a,b \in \langle f \rangle$ such that $$p = \sum\limits_{k=0}^{n-1}{a_kx^k} + a = \sum\limits_{k=0}^{n-1}{b_kx^k} + b.$$
Let $r = \sum\limits_{k=0}^{n-1}{a_kx^k}, s = \sum\limits_{k=0}^{n-1}{b_kx^k}$.
By definition of $\langle f \rangle$, there exists $q_1,q_2\in F[x]$ such that $$p = q_1f + r=q_2f+s, \qquad \deg(r)<n, \deg(s)<n.$$
The unicity of the remainder in the division of $p$ by $f$ shows that $r=s$, so $a_i=b_i, i=0,\ldots,n-1$.
{\bigskip}
Conclusion: Every element in $F[x]/\langle f \rangle$ is written as
$$a_0+a_1x+\cdots+a_{n-1}x^{n-1} + \langle f \rangle, \qquad a_0,a_1,\ldots,a_{n-1} \in F.$$
where $a_0,a_1,\ldots, a_{n-1}$ are unique.
\end{proof}
\paragraph{Ex. 4.3.2}
{\it Compute the degree of the following extensions:
\begin{enumerate}
\item[(a)] $\Q \subset \Q(i,\sqrt[4]{2})$.
\item[(b)] $\Q \subset \Q(\sqrt{3},\sqrt[3]{2})$.
\item[(c)] $\Q \subset \Q(\sqrt{2 + \sqrt{2}})$
\item[(d)] $\Q \subset \Q(i,\sqrt{2 + \sqrt{2}})$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Note that $\sqrt[4]{2}$ is a root of $p=x^4-2 \in \Q[x]$, and $p$ is irreducible over $\Q$ by Exercise 4.2.8 (or Sch\"onemann-Eisenstein Criterion for the prime 2). Thus $$[\Q(\sqrt[4]{2}) : \Q]=4.$$
$i$ is a root of $x^2+1$, which has no root in $\mathbb{R}$, a fortiori in $\Q[\sqrt[4]{2}]$. As its degree is 2, it is irreducible over $\Q[\sqrt[4]{2}]$, thus
$$[\Q(\sqrt[4]{2},i) : \Q(\sqrt[4]{2})] =2 .$$
Moreover $\Q(i,\sqrt[4]{2}) = \Q(\sqrt[4]{2},i)$. The Tower Theorem gives
$$[\Q(i,\sqrt[4]{2}) : \Q] = [\Q(\sqrt[4]{2},i) : \Q(\sqrt[4]{2})] \times [\Q(\sqrt[4]{2}) : \Q] = 8.$$
\item[(b)] $\sqrt[3]{2}$ is irrational, so $f = x^3-2$ has no root in $\Q$, and $\deg(f)= 3$, thus $f$ is irreducible over $\Q$ and $f$ is the minimal polynomial over $\Q$ of $\sqrt[3]{2}$, and so
$$[\Q(\sqrt[3]{2}) : \Q] = 3.$$
The roots of $x^2 - 3$ are $\pm\sqrt{3}$ and are irrational. As $\deg(x^2-3)=2$, and as $x^2-3$ has no root in $\Q$, $x^2-3$ is irreducible over $\Q$. It is the minimal polynomial of $\sqrt{3}$ over $\Q$, thus
$$[\Q(\sqrt{3}) : \Q] = 2.$$
Moreover
\begin{align*}
[\Q(\sqrt{3},\sqrt[3]{2}):\Q ]&=[\Q(\sqrt{3},\sqrt[3]{2}):\Q(\sqrt[3]{2}) ] \times [\Q(\sqrt[3]{2}):\Q) ] \\
&= [\Q(\sqrt{3},\sqrt[3]{2}):\Q(\sqrt{3}) ] \times [\Q(\sqrt{3}) : \Q] ,
\end{align*}
thus, if we write $d = [\Q(\sqrt{3},\sqrt[3]{2}):\Q ]$, then $2 \mid d,3 \mid d$, with $2\wedge 3=1$, thus $6\mid d$, $6\leq d$.
$\sqrt{3}$ is a root of $x^2-3 $, and the degree of $x^2-3 $ is 2. Its coefficients are in $\Q$, a fortiori in $\Q(\sqrt[3]{2})$. Thus the minimal polynomial $p$ of $\sqrt{3}$ over $\Q(\sqrt[3]{2})$ divides $x^2-3$. Its degree $\delta = \deg(p) = [\Q(\sqrt{3},\sqrt[3]{2}):\Q(\sqrt[3]{2}) ]$ satisfies then $\delta \leq 2$.
As $d = 3 \delta \geq 6 $, and so $\delta \leq 2$, $d \leq 6$. Therefore $d=6$.
$$[\Q(\sqrt{3},\sqrt[3]{2}):\Q ]=6.$$
\item[(c)]
Let $\alpha= \sqrt{2+\sqrt{2}}$.
Then $\alpha^2 = 2 + \sqrt{2}, \alpha^2-2 = \sqrt{2}, (\alpha^2-2)^2 - 2= 0, \alpha^4 - 4 \alpha^2 + 2 = 0$.
$\alpha$ is a root of
$$f= x^4-4x^2+2.$$
We show that $f$ is irreducible over $\Q$.
$f= x^4-4x^2+2 = a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$ satisfies
$2 \nmid a_4 =1, 2 \mid a_3=0,2\mid a_2=-4, 2 \mid a_1=0,2 \mid a_0=2, 2^2 \nmid a_0 = 2$, so
the Sch\"onemann-Eisenstein Criterion with $p=2$ implies that $f$ is irreducible over $\mathbb{Q}$.
Conclusion: $f = x^4 -4x^2+2$ is irreducible over $\Q$. $f$ is the minimal polynomial of $\alpha = \sqrt{2+\sqrt{2}}$, thus
$$\left[\Q\left(\sqrt{2+\sqrt{2}}\right):\Q\right]=4.$$
\item[(d)]
$x^2+1$ has no real root, a fortiori no root in $\Q(\sqrt{2+\sqrt{2}})$, and $\deg(x^2+1) = 2$. Thus $x^2+1$ is irreducible over $\Q(\sqrt{2+\sqrt{2}})$, it is the minimal polynomial of $i$ over $\Q(\sqrt{2+\sqrt{2}})$, thus
$$\left [\Q\left(i,\sqrt{2+\sqrt{2}}\right):\Q\left(\sqrt{2+\sqrt{2}}\right)\right]=2.$$
Consequently
$$\left [\Q\left(i,\sqrt{2+\sqrt{2}}\right):\Q\right]=\left [\Q\left(i,\sqrt{2+\sqrt{2}}\right):\Q\left(\sqrt{2+\sqrt{2}}\right)\right] \times \left[\Q\left(\sqrt{2+\sqrt{2}}\right):\Q\right] = 8.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.3.3}
{\it For each of the extensions in Exercise 2, find a basis over $\Q$ using the method of Example 4.3.9.
}
\begin{proof}
\begin{enumerate}
\item[(a)]
$(1,\sqrt[4]{2},\sqrt[4]{2}^2,\sqrt[4]{2}^3)$ is a basis of $\Q(\sqrt[4]{2})$ over $\Q$, and $(1,i)$ a basis of $\Q(i,\sqrt[4]{2})$ over $\Q(\sqrt[4]{2})$, thus
$$(1,\sqrt[4]{2},\sqrt[4]{2}^2,\sqrt[4]{2}^3, i, i\sqrt[4]{2},i\sqrt[4]{2}^2,i\sqrt[4]{2}^3)$$
is a basis of $\Q(i,\sqrt[4]{2})$ over $\Q$
\item[(b)]
$(1,\sqrt[3]{2},\sqrt[3]{2}^2)$ is a basis of $\Q(\sqrt[3]{2})$ over $\Q$, and $(1,\sqrt{3})$ a basis of $\Q(\sqrt{3},\sqrt[3]{2})$ over $\Q(\sqrt[3]{2})$, thus
$$ ( 1,\sqrt[3]{2},\sqrt[3]{2}^2, \sqrt{3},\sqrt{3}\sqrt[3]{2},\sqrt{3}\sqrt[3]{2}^2)$$
is a basis of $\Q(\sqrt{3},\sqrt[3]{2})$ over $\Q$.
\item[(c)] The minimal polynomial of $\sqrt{2+\sqrt{2}}$ over $\Q$ being of degree 4,
$$\left(1,\sqrt{2+\sqrt{2}},\sqrt{2+\sqrt{2}}^{\, 2}= 2+\sqrt{2}, \sqrt{2+\sqrt{2}}^{\, 3} =(2+\sqrt{2})\sqrt{2+\sqrt{2}} \right)$$
is a basis of $\Q\left(\sqrt{2+\sqrt{2}}\right)$ over $\Q$.
\item[(d)]w
A basis of $\Q\left(i,\sqrt{2+\sqrt{2}}\right)/ \Q\left(\sqrt{2+\sqrt{2}}\right)$ being $(1,i)$,
$$(1,\alpha,\alpha^2,\alpha^3,i,i\alpha,i\alpha^2,i\alpha^3),\qquad \mathrm{where}\ \alpha = \sqrt{2+\sqrt{2}},$$
is a basis of $\Q\left(i,\sqrt{2+\sqrt{2}}\right)$ over $\Q$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.3.4}
{\it Suppose that $F\subset L$ is a finite extension with $[L:F]$ prime.
\begin{enumerate}
\item[(a)] Show that the only subfields of $L$ containing $F$ are $F$ and $L$.
\item[(b)] Show that $L = F(\alpha)$ for any $\alpha \in L \setminus F$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
If a subfield $K$ of $L$ satisfies $F \subset K \subset L$, then
$$[L:F] = [L:K][K:F],$$
so $[K:F]$ divides $p = [L:F]$, where $p$ is a prime.
If $[K:F] = 1$, then $K = F$, and if $[K:F]=p$, then $[L:K]= 1$, thus $K = L$.
Conclusion: If $[L:F]$ is a prime number, the only intermediate subfields of the extension $F \subset L$ are $L$ and $F$.
\item[(b)] Since $\alpha \in L$, $F \subset F(\alpha) \subset L$.
If $\alpha \not \in F$, then $F(\alpha) \neq F$, thus by (a), $F(\alpha) = L$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.3.5}
{\it Consider the extension $\Q \subset L = \Q(\sqrt[4]{2},\sqrt[3]{3})$. We will compute $[L:\Q]$.
\begin{enumerate}
\item[(a)] Show that $x^4 - 2$ and $x^3 - 3$ are irreducible over $\Q$.
\item[(b)] Use $\Q \subset \Q(\sqrt[4]{2}) \subset L$ to show that $4 \mid [L:\Q]$ and $[L:\Q] \leq 12$.
\item[(c)] Use $\Q \subset \Q(\sqrt[3]{3}) \subset L$ to show that $[L : \Q]$ is also divisible by 3.
\item[(d)] Explain why parts (b) and (c) imply that $[L:\Q] = 12$. This works because 3 and 4 are relatively prime. Do you see why ?
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
The Sch\"onemann-Eisenstein Criterion with $p=2$ shows that $x^4-2$ is irreducible over $\Q$, and with $p=3$ shows that $f = x^3-3$ is irreducible over $\Q$ (alternatively, we can use Exercise 4.2.8).
\item[(b)]
As $x^4-2$ is irreducible over $\Q$ by (a), $x^4 - 2$ is the minimal polynomial over $\Q$ of $\sqrt[4]{2}$.
$$ [L : \Q] = [L : \Q(\sqrt[4]{2})] \times [\Q(\sqrt[4]{2}):\Q], $$
thus $4 = \deg(x^4-2) = [\Q(\sqrt[4]{2}):\Q]$ divides $ [L : \Q] $.
As $x^3 - 3 \in \mathbb{Q}[x]$ is a fortiori in $\mathbb{Q}(\sqrt[4]{2})[x]$, the minimal polynomial $P$ of $\sqrt[3]{3}$ over $\Q(\sqrt[4]{2})$ divides $x^3-3$, so its degree satisfies $\deg(P) \leq 3$. Consequently, $[L : \Q(\sqrt[4]{2})] = \deg(P) \leq 3$ (et $[\Q(\sqrt[4]{2}):\Q] = 4)$, thus
$$ [L : \Q] = [L : \Q(\sqrt[4]{2})] \times [\Q(\sqrt[4]{2}):\Q] \leq 12$$
\item[(c)]
Similarly, $x^3-3$ is the minimal polynomial of $\sqrt[3]{3}$ over $\Q$.
$$ [L : \Q] = [L : \Q(\sqrt[3]{3})] \times [\Q(\sqrt[3]{3}):\Q], $$
thus $3 = \deg(x^3-3) = [\Q(\sqrt[3]{3}):\Q]$ divides $ [L : \Q] $.
\item[(d)]
As $3\mid [L : \Q]$, and as $4 \mid [L : \Q] $, where 3 and 4 are relatively prime, $$12 = 3 \times 4 \mid [L : \Q] .$$ In particular, $12 \leq [L : \Q] $. By (b), $12 \geq [L : \Q] $, thus
$$ [L : \Q] =12.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.3.6}
{\it Suppose that $\alpha$ and $\beta$ are algebraic over $F$ with minimal polynomials $f$ and $g$ respectively. Prove the {\bf Reciprocity theorem}: $f$ is irreducible over $F(\beta)$ if and only if $g$ is irreducible over $F(\alpha)$.
}
\begin{proof}
Write $d_1 =[F(\alpha) : F], \delta_1= [F(\alpha,\beta):F(\alpha)], d_2 = [F(\beta):F],\delta_2 = [F(\alpha,\beta):F(\beta)]$.
The tower Theorem gives the two relations
\begin{align}
[F(\alpha,\beta) :F] = \delta_1 d_1 = \delta_2 d_2. \label{eq:4.3.6}
\end{align}
Suppose that $f$ is irreducible over $F(\beta)$ (this makes sense because $f \in F[x]$ has a fortiori its coefficients in $F(\beta)$).
Then $f$ is the minimal polynomial of $\alpha$ over $F(\beta)$, thus $$ \delta_2 = [F(\alpha,\beta),F(\beta)] = \deg(f) =d_1.$$
$\delta_2 = d_1$, combined with the relation \eqref{eq:4.3.6}, gives $\delta_1= d_2$.
Let $G$ be the minimal polynomial of $\beta$ over $F(\alpha)$.
As $g \in F[x] \subset F(\alpha)[x]$, and $g(\beta)=0$, then $G \mid g$, and $\deg(g) = d_2 = \delta_1 = \deg(G)$, where $g$ and $G$ are monic, thus $g=G$.
As $G$ is irreducible over $F(\alpha)$, $g$ is also irreducible over $F(\alpha)$.
We have proved:
\begin{center}
$f$ is irreducible over $F(\beta)$ $\Rightarrow$ $g$ is irreducible over $F(\alpha)$.
\end{center}
The proof of the converse is similar, by exchange of $\alpha,\beta$.
\begin{center}
$f$ is irreducible over $F(\beta)$ $\iff$ $g$ is irreducible over $F(\alpha)$.
\end{center}
\end{proof}
\paragraph{Ex. 4.3.7}
{\it Suppose we have extensions $L_0 \subset L_1 \subset \cdots \subset L_m$. Use induction to prove the following generalization of Theorem 4.3.8:
\begin{enumerate}
\item[(a)] If $[L_i:L_{i-1}] = \infty$ for some $1\leq i \leq m$, then $[L_m:L_0] = \infty$.
\item[(b)] If $[L_i:L_{i-1}] < \infty$ for all $1\leq i \leq m$, then
$$[L_m:L_0] = [L_m:L_{m-1}][L_{m-1}:L_{m-2}]\cdots[L_2:L_1][L_1:L_0].$$
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
The Tower Theorem shows that (a) and (b) are true for $m=2$. Suppose that (a) and (b) are true for an integer $m\geq 2$. We prove that they remain true for the integer $m+1$.
$\bullet$ If $[L_i : L_{i-1}] = \infty$ for some $i, 1 \leq i \leq m$, the induction hypothesis show that $[L_m : L_0] = \infty$. As $L_0 \subset L_m \subset L_{m+1}$, the part (a) of Theorem 4.3.8 (Tower Theorem), shows that $[L_{m+1} : L_0] = \infty$.
Moreover, if $[L_{m+1} : L_{m}] = \infty$, this same part (a) of Tower Theorem gives also $[L_{m+1} : L_0] = \infty$.
For all $i, 1 \leq i \leq m+1$, $$[L_i : L_{i-1}] = \infty \Rightarrow [L_{m+1} : L_0] = \infty,$$ so the part (a) is proved for the integer $m+1$.
$\bullet$ Suppose that $[L_i : L_{i-1}] < \infty$ for all $i, 1\leq i \leq m+1$.
Then the induction hypothesis gives
$$[L_m : L_0] = \prod_{1\leq i \leq m} [L_i : L_{i-1}]$$
The part (b) of theorem 4.3.8 implies that
\begin{align*}
[L_{m+1}:L_0] &= [L_{m+1}:L_{m}] \times [L_{m}:L_0] \\
&= [L_{m+1}:L_{m}] \times \prod_{1\leq i \leq m} [L_i : L_{i-1}] \\
&= \prod_{1\leq i \leq m+1} [L_i : L_{i-1}].
\end{align*}
So the induction is done.
\end{enumerate}
\end{proof}
\subsection{ALGEBRAIC EXTENSIONS}
\paragraph{Ex. 4.4.1}
{\it Lemma 4.4.2 shows that a finite extension is algebraic. Here we will give an example to show that the converse is false. The field of algebraic numbers $\overline{\Q}$ is by definition algebraic over $\Q$. You will show that $[\overline{\Q} : \Q] = \infty$ as follows
\begin{enumerate}
\item[(a)] Given $n\geq 2$ in $\Z$, use Example 4.2.4 from section 4.2 to show that $\overline{\Q}$ has a subfield $L$ such that $[L:\Q] = n$.
\item[(b)] Explain why part (a) implies that $[\overline{\Q} : \Q] = \infty$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
In Example 4.2.4, we have seen that the Sch\"onemann-Eisenstein Criterion implies that, for all $n\geq 2$, and $p$ prime,
$$f=x^n+px+p$$ is irreducible over $\mathbb{Q}$.
Let $\alpha$ a root of $f$ in $\C$. Since $f$ is irreducible over $\Q$, the minimal polynomial of $\alpha$ over $\Q$ is $f$, and
$$[\Q(\alpha) : \Q] = \deg(f) = n.$$
As $[\Q(\alpha) : \Q] < \infty$, every element of $\Q(\alpha)$ is algebraic, so
$$\Q \subset \Q(\alpha) \subset \overline{\Q}.$$
$L = \Q(\alpha)$ is so an answer to the question.
\item[(b)]
Suppose on the contrary that $[\overline{\Q} : \Q] < \infty$. The tower theorem gives then
$$[\overline{\Q} : \Q] = [\overline{\Q} : \Q(\alpha)] \times [\Q(\alpha) : \Q] \geq [\Q(\alpha) : \Q] \geq n.$$
Then for all integer $n \geq 2$, $[\overline{\Q} : \Q] \geq n$, thus $[\overline{\Q} : \Q] = \infty$, which is a contradiction.
Conclusion : $[\overline{\Q} : \Q] = \infty$.
$\overline{\Q}$ is an algebraic extension of $\Q$, with infinite dimension.
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.4.2}
{\it Let $\alpha \in \C$ be a solution of (4.14). We will show that the minimal polynomial of $\alpha$ over $\Q$ has degree at most $1760$. Let $L = \Q(\sqrt{2},\sqrt{5},\sqrt[4]{12},i,\sqrt[5]{17},\alpha)$.
\begin{enumerate}
\item[(a)] Show that $[L:\Q] \leq 1760$.
\item[(b)] Use Lemme 4.4.2 to show that the minimal polynomial polynomial of $\alpha$ has degree at most $1760$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $\alpha \in \C$ be a root of
$$f = x^{11}-(\sqrt{2}+\sqrt{5}) x^5+3\sqrt[4]{12}x^3+(1+3i) x +\sqrt[5]{17}.$$
Let $L = \Q(\sqrt{2},\sqrt{5},\sqrt[4]{12},i,\sqrt[5]{17},\alpha)$, and $K = \Q(\sqrt{2},\sqrt{5},\sqrt[4]{12},i,\sqrt[5]{17})$.
$f \in K[x]$, and $\alpha$ is a root of $f$. The minimal polynomial $p$ of $\alpha$ over $K$ divides $f$, thus $[L : K] = [K(\alpha) : K] =\deg(p) \leq \deg(f)=11$:
$$[L : K]\leq 11.$$
Moreover, if we write
$K_4 = \Q(\sqrt{2},\sqrt{5},\sqrt[4]{12},i), K_3 = \Q(\sqrt{2},\sqrt{5},\sqrt[4]{12}),K_2 = \Q(\sqrt{2},\sqrt{5}), K_1 = \Q(\sqrt{2})$,
then
\begin{align*}
[K : \Q] &= [K : K_4] .[K_4:K_3] .[K_3:K_2] .[K_2:K_1] .[K_1:\Q]\\
& = [K_4( \sqrt[5]{17}): K_4]. [K_3(i):K_3]. [K_2(\sqrt[4]{12}):K_2] .[K_1(\sqrt{5}):K_1]. [\Q(\sqrt{2}):\Q]\\
\end{align*}
The minimal polynomial $P$ of $ \sqrt[5]{17}$ over $K_4$ divides $x^5-17 \in \Q[x] \subset K_4[x]$, thus $[K_4(\sqrt[5]{17}) : K_4] = \deg(P) \leq 5$. With similar arguments,
$$[K_3(i):K_3] \leq 2, [K_2(\sqrt[4]{12}):K_2] \leq 4, [K_1(\sqrt{5}):K_1] \leq 2,[\Q(\sqrt{2}):\Q] \leq 2,$$
Consequently
\begin{align*}
[K : \Q] &\leq 5\times 2 \times 4 \times 2 \times 2 = 160
\end{align*}
and
$$[L : \Q] = [L:K][K:\Q] \leq 11 \times 160 = 1760.$$
\item[(b)]
By Lemma 4.4.2(b), as $\alpha \in L$, the degree of the minimal polynomial of $\alpha$ over $\Q$ divides ${[L:\Q] \leq 1760}$, hence $\deg(p) \leq 1760$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 4.4.3}
{\it In the Mathematical Notes, we defined an algebraic integer to be a complex number $\alpha \in \C$ that is a root of a monic polynomial in $\Z[x]$.
\begin{enumerate}
\item[(a)] Prove that $\alpha \in \C$ is an algebraic integer if and only if $\alpha$ is an algebraic number whose minimal polynomial over $\Q$ has integer coefficients.