-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter5.tex
1415 lines (1051 loc) · 66.3 KB
/
Cox_Galois_Chapter5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\author{Richard Ganaye}
\refstepcounter{section} \refstepcounter{section} \refstepcounter{section} \refstepcounter{section}
\begin{document}
\section{Chapter 5}
\subsection{NORMAL AND SEPARABLE EXTENSIONS}
\paragraph{Ex. 5.1.1}
{\it Show that a splitting field of $x^3-2$ over $\Q$ is $\Q(\omega,\sqrt[3]{2}), \omega = e^{2\pi i/3}$.
}
\begin{proof}
The roots of $x^3-2$ are $\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}$. A splitting field of $x^3-2$ over $\Q$ is thus $\Q(\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}) \subset \C$.
As $\omega,\sqrt[3]{2} \in \Q(\omega,\sqrt[3]{2})$, and as $\Q(\omega,\sqrt[3]{2})$ is a field, $\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}$ are elements of $\Q(\omega,\sqrt[3]{2})$. Since $\Q(\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}) $ is the smallest subfield of $\C$ containing $\Q$ and $\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}$,
$$\Q(\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}) \subset \Q(\omega,\sqrt[3]{2}).$$
Moreover $ \omega = \omega\sqrt[3]{2} / \sqrt[3]{2} \in \Q(\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2})$ and $\sqrt[3]{2} \in \Q(\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2})$. As $\Q(\omega,\sqrt[3]{2})$ is the smallest subfield of $\C$ containing these two elements,
$$\Q(\omega,\sqrt[3]{2}) \subset \Q(\sqrt[3]{2},\omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}).$$
These two subfields are identical.
Conclusion : a splitting field of $x^3-2$ over $\Q$ is $\Q(\omega,\sqrt[3]{2})$.
\end{proof}
\paragraph{Ex. 5.1.2}
{\it Prove that $f\in F[x]$ splits completely over $F$ if and only if $F$ is the splitting field of $f$ over $F$.
}
\begin{proof}
Suppose that $f \in F[x]$ splits completely over $F$:
$$f = a(x-x_1)\cdots(x-x_n), \ x_i \in F,i=1,\ldots,n.$$
The roots of $f$ are so $x_1,\ldots, x_n$, with possibly some repetitions. As $x_i \in F,\ i=1,\ldots,n$, $F(x_1,\ldots,x_n) = F$.
By Definition 5.1.1, a splitting field of $f$ over $F$ is $F(x_1,\ldots,x_n)$.
Conversely, suppose that a splitting field of $f$ over $F$ is $F$. Let $x_1,\ldots,x_n$ the roots of $f$ in this splitting field of $f$. As this field is $F$, $x_1,\ldots ,x_n \in F$, thus
$$f = a(x-x_1)\cdots(x-x_n), \ x_i \in F,\ i=1,\ldots,n.$$
So $f$ splits completely over $F$.
\end{proof}
\paragraph{Ex. 5.1.3}
{\it Prove that an extension $F\subset L$ of degree 2 is a splitting field.
}
\begin{proof}
Suppose that $[L:F]=2$. Then $F\subsetneq L$, so there exists $\alpha \in L$ such that $\alpha \not \in F$.
As $\alpha \not \in F$, $F \subsetneq F(\alpha)$, thus $[F(\alpha):F]>1$. Since $F(\alpha) \subset L$, $[F(\alpha):F]\leq 2$, hence $[F(\alpha):F] = 2$, so $F(\alpha) = L$.
Let $f$ be the minimal polynomial of $\alpha$ over $F$. Then $\deg(f) =[F(\alpha):F] = 2$, so $f = x^2+ax+b,\ a,b\in F$.
Since $\alpha \in L$ is a root of $x^2 +ax +b \in F[x] \subset L[x]$, there exists a polynomial $q(x) \in L[x]$ such that $x^2 +a x + b = (x- \alpha)q(x)$, where $\deg(q) = 1$ and $q$ is monic. Therefore there exists $\beta \in L$ such that $q(x) = x- \beta$. So $f = (x-\alpha)(x-\beta)$ splits completely over $L$, and since $\beta \in L$, $L = F(\alpha) = F(\alpha,\beta)$. $L$ is a splitting field of $f$.
Conclusion: Every quadratic extension $L$ of a field $F$ is a splitting field (so is a normal extension).
\end{proof}
\paragraph{Ex. 5.1.4}
{\it Find the splitting field of $x^6-1 \in \Q[x]$.
}
\begin{proof}
The set of roots of $x^6-1$ in $\C$ is $S = \{1,\zeta,\zeta^2,\zeta^3,\zeta^4,\zeta^5\}$, where ${\zeta = e^{2i\pi/6} = e^{i\pi/3} = -\omega^2}$.
As $\omega^3=1$,
$$S = \{1, -\omega^2, \omega,-1,\omega^2,-\omega\}.$$
the splitting field of $x^6-1$ over $\Q$ (included in $\C$) is so $\Q(1, -\omega^2, \omega,-1,\omega^2,-\omega) = \Q(S)$.
As $S \subset \Q(\omega)$, $\Q(S) \subset \Q(\omega)$.
Conversely, $\omega \in S$, thus $\Q(\omega) \subset \Q(S)$.
Conclusion : the splitting field of $x^6-1$ over $\Q$ is $\Q(\omega)$.
\end{proof}
\paragraph{Ex. 5.1.5}
{\it We showed in Section 4.1 that $f =x^4-10x^2+1$ is irreducible over $\Q$. Show that $L = \Q(\sqrt{2}+ \sqrt{3})$ is the splitting field of $f$ over $\Q$.
}
\begin{proof}
Recall the computing of Exercise 4.1.8(b) :
\begin{align*}
f&= (x-\sqrt{2} - \sqrt{3})(x+\sqrt{2} -\sqrt{3}) (x-\sqrt{2} + \sqrt{3})(x+\sqrt{2} + \sqrt{3})\\
&=[(x-\sqrt{3})^2-2][(x+\sqrt{3})^2-2]\\
&= (x^2 -2\sqrt{3} x +1)(x^2 -2\sqrt{3} x +1)\\
&= (x^2+1)^2 - (2\sqrt{3}x)^2\\
&=x^4 -10x^2 +1
\end{align*}
The splitting field of $f$ over $\Q$ is thus $$K = \Q(\sqrt{2} + \sqrt{3},\sqrt{2} - \sqrt{3},-\sqrt{2} + \sqrt{3},-\sqrt{2} + \sqrt{3}).$$
As $\sqrt{2} + \sqrt{3},\sqrt{2} - \sqrt{3},-\sqrt{2} + \sqrt{3},-\sqrt{2} + \sqrt{3} \in \Q(\sqrt{2},\sqrt{3})$, then $$K \subset \Q(\sqrt{2},\sqrt{3}).$$
Moreover,
\begin{align*}
\sqrt{2} &= \frac{1}{2}\left[(\sqrt{2}+\sqrt{3}) - (-\sqrt{2}+\sqrt{3})\right] \in K,\\
\sqrt{3} &= \frac{1}{2}\left[(\sqrt{2}+\sqrt{3}) - (\sqrt{2}-\sqrt{3}) \right]\in K,
\end{align*}
thus $$\Q(\sqrt{2},\sqrt{3}) \subset K.$$
So $K = \Q(\sqrt{2},\sqrt{3})$. Moreover, the Example 4.3.9 shows that $\Q(\sqrt{2},\sqrt{3}) = \Q(\sqrt{2}+\sqrt{3})$.
(Or a direct proof is given in section 4.2, since $\sqrt{2} = \frac{1}{2}(\alpha^3 - 9 \alpha)$, where $\alpha = \sqrt{2}+\sqrt{3}$, and $\sqrt{3} = \alpha - \sqrt{2}$, so $\sqrt{2},\sqrt{3} \in \Q(\sqrt{2}+\sqrt{3})$.)
Conclusion: the splitting field of $x^4-10x^2+1$ over $\Q$ is $\Q(\sqrt{2}+\sqrt{3})$.
\end{proof}
\paragraph{Ex. 5.1.6}
{\it Let $f\in \Q[x]$ be the minimal polynomial of $\alpha = \sqrt{2+\sqrt{2}}$
\begin{enumerate}
\item[(a)] Show that $f = x^4-4x^2+2$. Thus $[\Q(\alpha) : \Q]=4$.
\item[(b)] Show that $\Q(\alpha)$ is the splitting field of $f$ over $\Q$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $\alpha= \sqrt{2+\sqrt{2}}$.
Then $\alpha^2 = 2 + \sqrt{2}, \alpha^2-2 = \sqrt{2}, (\alpha^2-2)^2 - 2= 0, \alpha^4 - 4 \alpha^2 + 2 = 0$.
So $\alpha$ is a root of
$$f= x^4-4x^2+2.$$
The calculation of the roots in $\C$ of $f$ gives (cf Ex. 4.3.2) :
\begin{align*}
f(\beta) = 0 &\iff (\beta^2-2)^2 = 2\\
&\iff \beta^2 = 2 +\varepsilon \sqrt{2}, \ \varepsilon \in \{-1,1\}\\
&\iff \beta =\varepsilon' \sqrt{2 +\varepsilon \sqrt{2}},\ \varepsilon, \varepsilon' \in \{-1,1\}\\
&\iff \beta \in \left\{ \sqrt{2+\sqrt{2}}, -\sqrt{2+\sqrt{2}}, \sqrt{2-\sqrt{2}},-\sqrt{2-\sqrt{2}}\right\}.
\end{align*}
Thus
\begin{align}
f = \left(x-\sqrt{2+\sqrt{2}}\right)\left(x+\sqrt{2+\sqrt{2}}\right)\left(x-\sqrt{2-\sqrt{2}}\right)\left(x+\sqrt{2-\sqrt{2}}\right).
\end{align}
We show that $f$ is irreducible over $\Q$.
The Sch\"onemann-Eisenstein Criterion, with $p=2$ applies to the polynomial $f= x^4-4x^2+2 = a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$
($2 \nmid a_4 =1, 2 \mid a_3=0,2\mid a_2=-4, 2 \mid a_1=0,2 \mid a_0=2, 2^2 \nmid a_0 = 2$). $f$ is so irreducible over $\mathbb{Q}$.
Consequently, $f$ of degree 4, is the minimal polynomial of $\alpha= \sqrt{2+\sqrt{2}}$ over $\Q$, so,
$$\left[\Q\left(\sqrt{2+\sqrt{2}}\right):\Q\right] = 4.$$
\item[(b)]
The splitting field of $f$ over $\Q$ is $$K=\Q\left( \sqrt{2+\sqrt{2}}, -\sqrt{2+\sqrt{2}}, \sqrt{2-\sqrt{2}},-\sqrt{2-\sqrt{2}}\right) = \Q\left( \sqrt{2+\sqrt{2}} , \sqrt{2-\sqrt{2}}\right).$$
Let $\alpha= \sqrt{2+\sqrt{2}}, \gamma= \sqrt{2-\sqrt{2}}$. Then $K=\Q(\alpha,\gamma)$.
Note that $\alpha \gamma = \sqrt{4-2} = \sqrt{2}$
Moreover $\alpha^2 = 2+\sqrt{2}, \gamma^2 = 2 - \sqrt{2}$, thus $\alpha^2 - \gamma^2 = 2\sqrt{2} = 2 \alpha \gamma$.
$$\alpha^2 - \frac{2}{\alpha^2} = 2 \alpha \gamma.$$
So
$$\gamma = \frac{1}{2}\left( \alpha - \frac{2}{\alpha^3}\right) \in \Q(\alpha).$$
Consequently $\Q(\alpha) = \Q(\alpha,\gamma)$ is the splitting field of $f$ over $\Q$.
The splitting field of $x^4-4x^2+2$ over $\Q$ is $\Q(\sqrt{2+\sqrt{2}})$, of degree 4 over $\Q$.
Note: With Sage, we obtain $\gamma = \frac{1}{2}\left( \alpha - \frac{2}{\alpha^3}\right) = \alpha^3 - 3 \alpha$, and the factorization
$$x^4 - 4 x^2+2 = (x - \alpha) (x + \alpha) (x - \alpha^3 + 3\alpha) (x + \alpha^3 - 3\alpha).$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.1.7}
{\it Let $f = x^3-x+1 \in \F_3[x]$.
\begin{enumerate}
\item[(a)] Show that $f$ is irreducible over $\F_3$.
\item[(b)] Let $L$ be the splitting field of $f$ over $\F_3$. Prove that $[L:\F_3] = 3$.
\item[(c)] Explain why $L$ is a field with $27$ elements.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $f = x^3-x+1 \in \F_3[x]$.
As $\deg(f) = 3$, to prove the irreducibility of$f$, it is sufficient to show that $f$ has no root in $\F_3$.
This is the case, since every element $\alpha$ of $\F_3$ is a root of $x^3-x$ (little Fermat's theorem), so $\alpha^3 - \alpha + 1 = 1 \ne 0$ : $f(0) = f(1)=f(2) = 1$.
$f = x^3-x+1$ is irreducible over $\F_3$.
\item[(b)]
Let $L$ the splitting of $f$ over $\F_3$, and $\alpha$ a root of $f$ in $L$.
As the characteristic of $\F_3$ is 3,
\begin{align*}
f(x+1) &= (x+1)^3 -(x+1)+1\\
&= (x^3+1)-(x+1)+1\\
&= x^3-x+1\\
&=f(x)
\end{align*}
Consequently, $\alpha, \alpha+1,\alpha+2$ are the distinct roots of $f$, since $0,1,2$ are distinct in $\F_3$ :
$$f(x) = (x-\alpha)(x-\alpha-1)(x-\alpha-2).$$
As $\alpha+1,\alpha+2 \in \F_3(\alpha)$,
$$L = \F_3(\alpha,\alpha+1,\alpha+2) = \F_3(\alpha).$$
$f=x^3-x+1$ being the minimal polynomial of $\alpha$, $[\F_3(\alpha) : \F_3] = \deg(f) = 3$.
In conclusion, $L = \F_3(\alpha)$ is the splitting field of $x^3-x+1$ over $\F_3$. Its degree is 3 over $\F_3$. As a vector space over $\F_3$, its dimension is 3, so $L \simeq \F_3^3$, so its cardinality is $3^3=27$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.1.8}
{\it Let n be a positive integer. Then the polynomial $f = x^n-2$ is irreducible over $\Q$ by the Sch\"onemann-Eisenstein Criterion for the prime 2.
\begin{enumerate}
\item[(a)] Determine the splitting field $L$ of $f$ over $\Q$.
\item[(b)] Show that $[L:\Q] = n(n-1)$ when $n$ is prime.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
The set of the roots of $x^n-2 \in \Q[x]$ is $S = \{\zeta^k \sqrt[n]{2},\ k = 0,\cdots,n-1\}$, where $\zeta = e^{2i\pi/n}$: the splitting field $L$ of $x^n-2$ over $\Q$ is so $\Q(S)$.
As $\zeta = \zeta \sqrt[n]{2}/\sqrt[n]{2} \in \Q(S)$, $L = \Q(\zeta, \sqrt[n]{2})$.
\item[(b)]
Suppose that $n$ is prime.
As $f=x^n-2$ is irreducible over $\Q$, $f$ is the minimal polynomial of $\sqrt[n]{2}$ over $\Q$, so $[\Q(\sqrt[n]{2}) : \Q] = \deg(f)=n$.
As $n$ is prime, $1+x+\cdots+x^{n-1}$ is irreducible over $\Q$, thus $[\Q(\zeta):\Q] = n-1$.
\begin{center}
\begin{tikzpicture}
\node (L) at (3,4) {$L = \Q(\sqrt[n]{2},\zeta)$};
\node (R) at (1,2) {$\Q(\sqrt[n]{2})$};
\node (S) at (5,2) {$\Q(\zeta)$};
\node (Q) at (3,0) {$\Q$};
\draw[<-] (L) edge (R) edge (S);
\draw[->] (Q) edge node [left]{$n\ $} (R) ;
\draw[->] (Q) edge node [right]{$\ n-1$} (S) ;
\end{tikzpicture}
\end{center}
From the Tower Theorem,
\begin{align}
[L : \Q] &= [L : \Q(\sqrt[n]{2})] [\Q(\sqrt[n]{2} ): \Q] = n\, [L : \Q(\sqrt[n]{2})] \notag\\
[L : \Q] &=[L:\Q(\zeta)][Q(\zeta):\Q] = (n-1) [L:\Q(\zeta)] \label{eq5.1.8:1}
\end{align}
Thus $n \mid [L : \Q]$ and $n-1 \mid [L : \Q] $.
As $n,n-1$ are relatively prime,
\begin{align}
n(n-1) \mid [L : \Q].\label{eq5.1.8:2}
\end{align}
Moreover, the minimal polynomial $p$ of $\sqrt[n]{2}$ over $\Q(\zeta)$ divides $x^n-2 \in \Q[x] \subset \Q(\zeta)[x]$, thus $[L:\Q(\zeta)] = \deg(p) \leq n$. By \eqref{eq5.1.8:1}, $[L:\Q] \leq n(n-1)$, and by \eqref{eq5.1.8:2} $n(n-1) \mid [L:\Q]$, thus
$$[L:\Q] = n(n-1).$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.1.9}
{\it Let $f \in F[x]$ have degree $n>0$, and let $L$ be the splitting field of $f$ over $F$.
\begin{enumerate}
\item[(a)] Suppose that $[L:F] = n!$. Prove that $f$ is irreducible over $F$.
\item[(b)] Show that the converse of part (a) is false.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $f \in F[x], \deg(f)=n>0$, and $L$ be the splitting field of $f$ over $F$.
Suppose that $f$ is reducible over $F$. We show then that $[L:F]<n!$.
In this case, $f =gh$, where $1\leq k = \deg(g) \leq n-1$ (then $\deg(h)=n-k$).
The roots $\alpha_1,\cdots,\alpha_k$ of $g$, and the roots $\beta_1,\cdots,\beta_{n-k}$ of $h$, are the roots of $f$. They are thus in $L$, and
$$L = F(\alpha_1,\cdots,\alpha_k,\beta_1,\cdots,\beta_{n-k}).$$
Let $K = F(\alpha_1,\cdots,\alpha_k)$. This is the splitting field of $g$ over $F$. Theorem 5.1.5 shows that $[K:F] \leq k!$.
As $L = K(\beta_1,\cdots,\beta_{n-k})$ is the splitting field of $h$ over $K$, the same theorem shows that $[L : K] \leq (n-k)!$.
Hence
$$[L : F] = [L : K ]\ [K : F] \leq k!(n-k)!.$$
If $1\leq k \leq n-1$, $$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \prod\limits_{i=0}^{k-1} \frac{n-i}{k-i} > 1,$$
thus, for the same values of $k$,
$$k!(n-k)! < n!.$$
Consequently $[L : F] < n!$. In particular $[L : F] \neq n!$. The contraposition gives thus
\begin{center}
$[L : F] = n!\ \Rightarrow$ $f$ is irreducible over $F$.
\end{center}
\vspace{0.5cm}
\item[(b)]
We give a counterexample of the converse : by Exercise 5, $L = \Q(\sqrt{2}+\sqrt{3})$ is the splitting field of the irreducible polynomial $f = x^4-10x^2+1$, but
$[L : \Q] = [\Q(\sqrt{2}+\sqrt{3}):\Q] = 4 \neq 4! = 24$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.1.10}
{\it Let $F \subset L$ be the splitting field of $f \in F[x]$, and let $K$ be a field such that $F \subset K \subset L$. Prove that $K\subset L$ is the splitting field of some polynomial in $K[x]$.
}
\begin{proof}
If $F \subset K \subset L$, and if $L$ is the splitting field of $f$ over $K$, then $L$ is the splitting field of the same polynomial $f$ over $K$.
Indeed, $L$ contains the roots $\alpha_1,\ldots,\alpha_n$ of $f$, and $L = F(\alpha_1,\ldots\alpha_n)$. Moreover $f = c(x-\alpha_1)\cdots(x-\alpha_n), c\in F$.
$F \subset K \subset L$ and $\alpha_1,\ldots,\alpha_n \in L$, thus $K(\alpha_1,\ldots,\alpha_n) \subset L = F(\alpha_1,\ldots,\alpha_n) \subset K(\alpha_1,\ldots,\alpha_n)$. Consequently, $L = K(\alpha_1,\ldots,\alpha_n)$, and $f$ splits completely over the extension $K \subset L$ since $c \in F \subset K$. The conditions (a), (b) of definition 5.1.1 are filled: $L$ is the splitting field of $f$ over $F$.
Note: therefore, if $F\subset K \subset L$, and if $F \subset L$ is a normal extension, so is $K \subset L$.
\end{proof}
\paragraph{Ex. 5.1.11}
{\it Suppose that $f \in F[x]$ is irreducible of degree $n>0$, and let $L$ be the splitting field of $f$ over $F$.
\begin{enumerate}
\item[(a)] Prove that $n \mid [L:F]$.
\item[(b)] Give an example to show that $n = [L:F]$ can occur in part (a).
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $\alpha \in L$ a root of $f$. Then $F \subset F(\alpha) \subset L$, thus
$$[L:F] = [L:F(\alpha)]\ [F(\alpha) : F].$$
As $f$ is the minimal polynomial of $\alpha$, $[F(\alpha):F] = \deg(f) = n$, thus
$n \mid [L:F]$.
\item[(b)]
In Exercise 6, we have seen that $f = x^4-4x^2+2$, of degree $n=4$, has for splitting field $L = \Q(\sqrt{2}+ \sqrt{3}) = \Q(\sqrt{2},\sqrt{3})$, of degree 4 over $\Q$.
Here $[L : \Q] = 4 = \deg(f)$, the equality in relation (a) is so a possibility.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.1.12}
{\it In the situation of Theorem 5.1.6, explain why $[L_1:F_1] = [L_2:F_2]$.
}
\begin{proof}
$\overline{\varphi} : L_1\to L_2$ is a field isomorphism, whose restriction to $F_1$ (and co-restriction to $F_2$) is the field isomorphism $\varphi : F_1\mapsto F_2$.
$[L_1:F_1] < \infty$. Let $(f_1,\ldots,f_d)$ a basis of $L_1$ over $F_1$. We show that $(\overline{\varphi}(f_1), \ldots,\overline{\varphi}(f_d))$ is a basis of $L_2$ over $F_2$.
{\medskip}
$\bullet$ If \ $\sum_{i=1}^d b_i \overline{\varphi}(f_i) = 0$, where $b_i \in F_2$, then, since $\varphi : F_1\to F_2$ is surjective, ${b_i = \varphi(a_i)}, \ a_i \in F_1, \ i=1,\ldots d$.
As the restriction of $\overline{\varphi}$ to $F_1$ is $\varphi$, $b_i =\varphi(a_i) = \overline{\varphi}(a_i)$. $\overline{\varphi}$ being a ring homomorphism,
$$0= \sum_{i=1}^d b_i \overline{\varphi}(f_i) = \sum_{i=1}^d \overline{\varphi}(a_i) \overline{\varphi}(f_i) = \overline{\varphi}\left (\sum_{i=1}^d a_i f_i\right).$$
As the kernel of $\overline{\varphi}$ is $0$, $\sum_{i=1}^d a_i f_i =0$, where the family $(f_i)_{1\leq i \leq d}$ is free, thus $a_1=\cdots=a_d=0$, and since $b_i = \varphi(a_i)$, $b_1=\cdots=b_d=0$. So the family $(\overline{\varphi}(f_i))_{1\leq i \leq d}$ is free.
{\medskip}
$\bullet$ Let $y $ be any element in $L_2$. As $\overline{\varphi}$ is surjective, there exists $x\in L_1$ such that $y =\overline{\varphi}(x)$.
$(f_1,\cdots,f_d)$ being a basis, there exists $(a_1,\cdots,a_d) \in F_1^d$ such that $x = \sum_{i=1}^d a_i f_i$.
Then $$y = \overline{\varphi}(x) = \sum_{i=1}^d \overline{\varphi}(a_i) \overline{\varphi}(f_i) = \sum_{i=1}^d \varphi(a_i) \overline{\varphi}(f_i) = \sum_{i=1}^d b_i\overline{\varphi}(f_i),$$
where $b_i = \varphi(a_i) \in F_2$. Consequently $(\overline{\varphi}(f_i))_{1\leq i \leq d}$ is a basis of $L_2/F_2$, and so
$$[L_2:F_2] = d =[L_1:F_1].$$
\end{proof}
\paragraph{Ex. 5.1.13}
{\it Let $L = \Q(\sqrt{2},\sqrt{3})$. Use Proposition 5.1.8 to prove that there is an isomorphism $\sigma : L \simeq L$ such that $\sigma(\sqrt{2}) = \sqrt{2}$ and $\sigma(\sqrt{3}) = - \sqrt{3}$.
}
\begin{proof}
$\Q \subset \Q(\sqrt{2}) \subset L = \Q(\sqrt{2},\sqrt{3})$.
$f=x^2 - 3$ is irreducible over $\Q(\sqrt{2})$. Indeed, $\deg(f) = 2$, and $f$ has no root in $\Q(\sqrt{2})$, otherwise $\sqrt{3} = a + b \sqrt{2}, \ a,b \in \Q$. But then $3 = a^2+2b^2 + 2ab \sqrt{2}$. If $ab \neq 0$, then $\sqrt{2} = (3-a^2-2b^2)/(2ab) \in \Q$, which is false, thus $ab = 0$. If $b=0$, then $\sqrt{3} \in \Q$, and if $a = 0$, $\sqrt{3/2} \in \Q$ : the two cases are impossible. Consequently $f=x^2 - 3$ is irreducible over $\Q(\sqrt{2})$.
(This gives an alternative proof of $ [\Q(\sqrt{2},\sqrt{3}):\Q] = 4$.)
As $\Q(\sqrt{2},\sqrt{3})$ is the splitting field of $x^2-3$ over $\mathbb{Q}(\sqrt{2})$, by Proposition 5.1.8 there exists a field isomorphism $\sigma : L\to L$ which is the identity on $\Q(\sqrt{2})$ and which takes $\sqrt{3}$ to $-\sqrt{3}$. As $\sigma$ is the identity on $\Q(\sqrt{2})$, we have also $\sigma(\sqrt{2}) = \sqrt{2}$.
\end{proof}
\subsection{NORMAL EXTENSIONS}
\paragraph{Ex. 5.2.1}
{\it Prove that $\Q(\sqrt[4]{2})$ is not the splitting field of any polynomial in $\Q[x]$.
}
\begin{proof}
This is equivalent to show that $\Q(\sqrt[4]{2})$ is not a normal extension of $\Q$.
$x^4 - 2$ is an irreducible polynomial over $\Q$ by Sch\"onemann-Eisenstein Criterion with $p=2$.
The roots of the minimal polynomial of $\sqrt[4]{2}$ over $\Q$ are $\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i\sqrt[4]{2}$.
As the root $i \sqrt[4]{2}$ is a non real complex, it is not in $\Q(\sqrt[4]{2})\subset \R$. So $\Q \subset \Q(\sqrt[4]{2})$ is not a normal extension, thus $\Q(\sqrt[4]{2})$ is not the splitting field of any polynomial in $\Q[x]$.
\end{proof}
\paragraph{Ex. 5.2.2}
{\it Prove that an algebraic extension $F\subset L$ is normal if and only if for every $\alpha \in L$, the minimal polynomial of $\alpha$ over $F$ splits completely over $L$.
}
\begin{proof}
Let $F\subset L $ a normal extension. Let $\alpha \in L$. Its minimal polynomial $f \in F[x]$ is irreducible, thus this polynomial splits completely over $F$ by definition of a normal extension.
Conversely, suppose that every $\alpha \in L$ is such that its minimal polynomial splits completely over $F$.
Let $g \in F[x]$ any irreducible polynomial, and $\alpha$ a root of $g$ in $L$. Then $g$ is the minimal polynomial of $\alpha$ over $L$. So $g$ splits completely over $L$ by hypothesis. Hence every irreducible polynomial $g$ which has a root in $L$ splits completely over $L$. So the extension $F\subset L$ is normal.
\end{proof}
\paragraph{Ex. 5.2.3}
{\it Determine wether the following extensions are normal. Justify your answers.
\begin{enumerate}
\item[(a)] $\Q \subset \Q(\zeta_n)$, where $\zeta_n = e^{2\pi i/n}$.
\item[(b)] $\Q \subset \Q(\sqrt{2},\sqrt[3]{2})$.
\item[(c)] $F = \F_3(t) \subset F(\alpha)$, where $t$ is a variable and $\alpha$ is a root of $x^3-t$ in a splitting field.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
As $\Q(\zeta_n)$ contains $\zeta_n^k$ for all $k \in \Z$,
$$\Q(\zeta_n) = \Q(1,\zeta_n,\zeta_n^2,\cdots,\zeta_n^{n-1}).$$
$\Q(1,\zeta_n,\zeta_n^2,\cdots,\zeta_n^{n-1}) = \Q(\zeta_n)$ is the splitting field of $x^n-1$ over $\Q$.
Conclusion: $\Q \subset \Q(\zeta_n)$ is a normal extension.
\item[(b)]
The minimal polynomial of $\sqrt[3]{2} \in \Q(\sqrt{2}, \sqrt[3]{2} ) = L $ over $\Q$ is $f = x^3-2$. The roots of $f$ are $\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^2 \sqrt[3]{2}$. But $\omega \sqrt[3]{2} \not \in \R$, and $L \subset \R$, thus $\omega \sqrt[3]{2} \not \in L$. So $\Q \subset \Q(\sqrt{2}, \sqrt[3]{2} )$ is not a normal extension.
\item[(c)]
By Exercise 4.2.9, the polynomial $f = x^3-t$ is irreducible over $\F_3(t)$. Let $\alpha$ a root of $f$ in the spitting field $L$ of $x^3-t$ over $F$.
As the characteristic of $F$ is 3, $f = x^3-t = (x-\alpha)^3$, where $\alpha \in L$. The splitting field of $f$ over $F$ is so $F(\alpha)$, thus $F\subset F(\alpha)$ is a normal extension.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.2.4}
{\it Give an example of a normal extension of $\Q$ that is not finite.
}
\begin{proof}
$\overline{\Q}$ is by definition the set of all complex algebraic numbers over $\Q$. Theorem 4.4.10 shows that $\overline{\Q}$ is an algebraically closed field. If $f \in \Q[x]$ is an irreducible polynomial over $\Q$, a fortiori $f \in \overline{\Q}[x]$, and by definition of an algebraically closed field, $f$ splits completely over $\overline{\Q}$. Thus $\Q \subset \overline{\Q}$ is a normal extension.
In Exercise 4.4.1, we showed that $[\overline{\Q} : \Q] = \infty$. This extension is so an example of a normal extension of $\Q$ that is not finite.
\end{proof}
\subsection{SEPARABLE EXTENSION}
\paragraph{Ex. 5.3.1}
{\it Prove (5.6) :
\begin{align*}
(ag+bh)' &= ag'+bh'\\
(gh)'&= g'h+gh'
\end{align*}
where $f,g\in F[x],\ a,b \in F$.
}
\begin{proof}
Write
\begin{align}
g = \sum_{i=0}^n a_i x^i,\qquad h= \sum_{j=0}^m b_j x^j \in F[x]. \label{eq5.3.1:1}
\end{align}
(We suppose $a_i=0$ if $i>m$ or $i<0$, $b_j=0$ if $j>m$ or $j<0$.)
\begin{enumerate}
\item[(a)]
Write $N = \max(n,m)$ : then $$g= \sum_{i=0}^N a_i x^i,\qquad h= \sum_{i=0}^N b_i x^i.$$
\begin{align*}
g' = \sum_{i=1}^N ia_i x^{i-1},\qquad h' = \sum_{i=1}^N ib_i x^{i-1}.
\end{align*}
If $a,b\in F$, then
$$ ag'+bh' = \sum_{i=1}^N i(aa_i+bb_i) x^{i-1}.$$
Moreover
\begin{align*}
ag+bh &= \sum_{i=0}^N(aa_i+bb_i) x^i,\\
(ag+bh)'&= \sum_{i=1}^Ni(aa_i+bb_i) x^{i-1},
\end{align*}
thus
\begin{align*}
(ag+bh)'=ag'+bh'.
\end{align*}
\item[(b)]
By \eqref{eq5.3.1:1}, the definition of the product of two polynomials gives
$$gh = \sum_{k=0}^{m+n} \left(\sum_{i=0}^k a_i b_{k-i} \right)x^k .$$
Thus
$$(gh)'= \sum_{k=1}^{m+n} k\left(\sum_{i=0}^k a_i b_{k-i} \right)x^{k-1}=\sum_{k=0}^{m+n-1} (k+1)\left(\sum_{i=0}^{k+1} a_i b_{k+1-i} \right)x^{k}.$$
As
\begin{align*}
g' &= \sum_{i=1}^n ia_i x^{i-1} =\sum_{i=0}^{n-1} (i+1)a_{i+1} x^{i},\\
h' &= \sum_{j=1}^m jb_jx^{j-1} =\sum_{j=0}^{m-1} (j+1)b_{j+1} x^{j},
\end{align*}
we obtain
\begin{align*}
g'h&= \sum_{k=0}^{m+n-1}\left( \sum_{i=0}^k (i+1)a_{i+1} b_{k-i}\right)x^k\\
&= \sum_{k=0}^{m+n-1} \left(\sum_{i=1}^{k+1} i a_{i} b_{k+1-i}\right)x^k\\
&= \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k+1} i a_{i} b_{k+1-i}\right)x^k,\\
\end{align*}
and also
\begin{align*}
gh'&=\sum_{k=0}^{m+n-1}\left( \sum_{i=0}^k (k+1-i)a_{i} b_{k+1-i}\right)x^k\\
&=\sum_{k=0}^{m+n-1}\left( \sum_{i=0}^{k+1} (k+1-i)a_{i} b_{k+1-i}\right)x^k.
\end{align*}
Thus
\begin{align*}
g'h+gh' &= \sum_{k=0}^{m+n-1} \left(\sum_{i=0}^{k+1} i a_{i} b_{k+1-i}+ \sum_{i=0}^{k+1} (k+1-i)a_{i} b_{k+1-i} \right)x^k\\
&=\sum_{k=0}^{m+n-1}\left( \sum_{i=0}^k (i+k+1-i)a_{i} b_{k+1-i}\right)x^k\\
&=\sum_{k=0}^{m+n-1} (k+1)\left(\sum_{i=0}^{k+1} a_i b_{k+1-i} \right)x^{k}\\
&=(gh)'.
\end{align*}
We have proved the equations 5.6 :
\begin{align*}
(ag+bh)' &= ag'+bh',\\
(gh)'&= g'h+gh'.
\end{align*}
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.3.2}
{\it Let $F$ have characteristic $p$, and suppose that $\alpha,\beta \in F$. Lemma 5.3.10 shows that $(\alpha + \beta)^p = \alpha^p+\beta^p$.
\begin{enumerate}
\item[(a)] Prove that $(\alpha -\beta)^p = \alpha^p - \beta^p$ if $\alpha, \beta \in F$.
\item[(b)] Prove that $(\alpha + \beta)^{p^e} = \alpha^{p^e} + \beta^{p^e}$ for all $e\geq 0$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $F$ have characteristic $p$, $p\neq 0$. Then $p$ is prime. Let $\alpha,\beta\in F$.
If $p$ is an odd prime,
$$(\alpha- \beta)^p = \alpha+(-\beta)^p = \alpha^p +(-1)^p \beta^p = \alpha^p - \beta^p.$$
In the remaining case $p=2$, then $1=-1$, thus
$$(\alpha- \beta)^p = (\alpha+ \beta)^p=\alpha^p + \beta^p=\alpha^p - \beta^p.$$
\item[(b)]
Let $H : F \to F, x \mapsto x^p$ the Frobenius homomorphism of $F$.
By induction, we show that $H^n (x) = x^{p^n}$ for all $x\in F$ :
$H^0(x) = x = x^{p^0}$, and
$H^n(x) = x^{p^n} \Rightarrow H^{n+1}(x) = H(H^n(x)) = (x^{p^n})^p = x^{p.p^n} = x^{p^{n+1}}$.
If $e \in \N$, as $H^e$, power of a homomorphism, is a homomorphism, so $$H^e(\alpha+\beta) = H^e(\alpha)+H^e(\beta),$$ namely
$$(\alpha+\beta)^{p^e} = \alpha^{p^e}+\beta^{p^e}.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.3.3}
{\it Let $F$ be a field of characteristic $p$. The $n$th roots of unity are defined to be the roots of $x^n-1$ in the splitting field $F\subset L$ of $x^n-1$.
\begin{enumerate}
\item[(a)] If $p \nmid n$, show that there are $n$ distinct $n$th roots of unity in $L$.
\item[(b)] Show that there is only one $p$th root of unity, namely $1\in F$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] Here $n \geq 1$.
As $f = x^n-1$, then $f'=nx^{n-1}$.
If $p \nmid n$, then $n\neq 0$ in the field $F$ of characteristic $p$, thus $n$ is a unit in $F[x]$.
$x(nx^{n-1}) - n(x^n-1) = n = xf'-nf$ is a B\'ezout's relation between $f$ and $f'$, which proves that $f\wedge f'=1$. So $f$ is a separable polynomial, and the $n$ roots of $f$ in its splitting field, which are the $n$th roots of unity, are distinct.
\item[(b)]
If the characteristic of $F$ is $p$, by Exercise 2,
$$x^p-1 = (x-1)^p.$$
The only $p$th root of unity is thus 1.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.3.4}
{\it Let $f \in \Z[x]$ be monic and nonconstant and have discriminant $\Delta(f)$. Then let $f_p \in \F_p[x]$ be obtained from $f$ by reducing modulo $p$. Prove that $\Delta(f_p) \in \F_p$ is the congurence class of $\Delta(f)$.
}
\begin{proof}
Write $\Delta = \Delta(\sigma_1,\cdots,\sigma_n) \in F(\sigma_1,\cdots,\sigma_n) \subset F(x_1,\cdots,x_n)$ the discriminant.
Let $f =x^n + a_1 x^{n-1}+ \cdots+a_0 \in \Z[x]$ be a monic nonconstant polynomial.
In the section 2.4, $\Delta(f)$ is defined by
$$\Delta(f) = \Delta(-a_1,\cdots,(-1)^i a_i, \cdots,(-1)^n a_n).$$
obtained by applying to $\Delta(\sigma_1,\cdots,\sigma_n)$ the evaluation homomorphism defined by $\sigma_i \mapsto (-1)^ia_i$, which sends $\tilde{f} = x^n-\sigma_1 x^{n-1}+\cdots+(-1)^n \sigma_n$ on $f$, and $\Delta$ over $\Delta(f)$.
Write $f_p$ the reduction of $f$ modulo $p$ :
$f_p = x^n+\overline{a}_1x^{n-1}+\cdots+\overline{a}_0$, where we write $\overline{k} = [k]_p$ the class of $k \in \Z$ modulo $p$.
By definition,
$$\Delta(f_p) = \Delta(-\overline{a}_1,\cdots,(-1)^i \overline{a}_i, \cdots,(-1)^n \overline{a}_n).$$
$\Delta$ is a polynomial with coefficients in $\Z$ of $\sigma_1,\cdots,\sigma_n$, thus
$\Delta(-\overline{a}_1,\cdots,(-1)^i \overline{a}_i, \cdots,(-1)^n \overline {a}_n)$ is the reduction modulo $p$ of $\Delta(-a_1,\cdots,(-1)^i a_i, \cdots,(-1)^n a_n)$, so $\Delta(f_p)$ is the reduction modulo $p$ of $\Delta(f)$ : $$\Delta(f_p) = [\Delta(f)]_p.$$
\end{proof}
\paragraph{Ex. 5.3.5}
{\it For $f = x^7+x+1$, find all primes for which $f_p$ is not separable, and compute $\mathrm{gcd}(f_p,f'_p)$ as in (5.14).
}
\begin{proof}
The following Sage instructions give the wanted factorisation of the discriminant of $f$:
\begin{verbatim}
P.<x> = PolynomialRing(QQ)
f = x^7+x+1
g = diff(f(x),x)
d = f.resultant(g);d
\end{verbatim}
\begin{center}
870199
\end{center}
\begin{verbatim}
f.discriminant()
\end{verbatim}
\begin{center}
-870199
\end{center}
\begin{verbatim}
d.factor()
\end{verbatim}
\begin{center}
$11 \cdot 239 \cdot 331$
\end{center}
\begin{verbatim}
P.<x> = PolynomialRing(GF(11))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)
\end{verbatim}
\begin{center}
$x+3$
\end{center}
\begin{verbatim}
factor(f)
\end{verbatim}
\begin{center}
$(x + 3)^{2} \cdot (x^{5} + 5 x^{4} + 5 x^{3} + 2 x^{2} + 9 x + 5)$
\end{center}
\begin{verbatim}
P.<x> = PolynomialRing(GF(239))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)
\end{verbatim}
\begin{center}
$x+41$
\end{center}
\begin{verbatim}
factor(f)
\end{verbatim}
\begin{center}
$(x + 41)^{2} \cdot (x^{5} + 157 x^{4} + 24 x^{3} + 122 x^{2} + 81 x + 30)$
\end{center}
\begin{verbatim}
P.<x> = PolynomialRing(GF(331))
f = x^7 + x + 1; df = diff(f(x),x)
gcd(f,df)
\end{verbatim}
\begin{center}
$x+277$
\end{center}
\begin{verbatim}
factor(f)
\end{verbatim}
\begin{center}
$(x + 277)^{2} \cdot (x^{2} + 188 x + 203) \cdot (x^{3} + 251 x^{2} + 84x + 80).$
\end{center}
\bigskip
So
$$
\mathrm{gcd}(f_p,f'_p) =
\left\{
\begin{array}{ll}
x+3, & p = 11, \\
x + 41, & p = 239, \\
x + 277, & p = 331, \\
1 & \mathrm{otherwise.}
\end{array}
\right.
$$
\end{proof}
\paragraph{Ex. 5.3.6}
{\it Use part (a) of Theorem 5.3.15 to show that the splitting field of a separable polynomial gives a separable extension.
}
\begin{proof}
Let $F\subset L$ be the splitting field of a separable polynomial $f \in F[x]$ : $L=F(\alpha_1,\ldots,\alpha_n)$, where $\alpha_1,\ldots,\alpha_n$ are the distinct roots of $f$ in $L$, and
$$f = c(x-\alpha_1)\cdots(x-\alpha_n).$$
Let $f_i$ be the minimal polynomial of $\alpha_i$ over $F$. Then $f_i$ divides $f$, thus $f_i \in F[x]$ is a separable polynomial, since the unicity of the decomposition in irreducible factors in $L[x]$ shows that the only irreducible factors of $f_i$ in $L[x]$ are associate to $x-\alpha_j$. Consequently the $\alpha_i$ are separable for all $i,\ 1\leq i \leq n$. Part (a) of Theorem 5.3.15 shows then that $F\subset L$ is a separable extension.
\end{proof}
\paragraph{Ex. 5.3.7}
{\it Suppose that $F$ is a field of characteristic $p$. The goal of this exercise is to prove Proposition 5.3.16. To begin the proof, let $f \in F[x]$ be irreducible.
\begin{enumerate}
\item[(a)] Assume that $f'$ is not identically zero. Then use the argument of Lemma 5.3.5 to show that $f$ is separable.
\item[(b)] Now assume that $f'$ is identically zero. Show that there is a polynomial $g_1 \in F[x]$ such that $f(x) = g_1(x^p)$.
\item[(c)] Show that the polynomial of part (b) is irreducible.
\item[(d)] Now apply parts (a)-(c) to $g_1$ repeatedly until you get a separable polynomial $g$, and conclude that $f(x) = g(x^{p^e})$ where $e\geq 0$ and $g\in F[x]$ is irreducible and separable.
\end{enumerate}
}
\begin{proof}
Let $F$ be a field of characteristic $p$, and $f \in F[x]$ irreducible over $F$, with degree $n\geq 1$.
\begin{enumerate}
\item[(a)]
We suppose first that $f'\neq 0$.
Let $d = f\wedge f'$. Then $d$ divides $f$ (and $d$ is monic), and $f$ is irreducible over $F$, thus $d=1$ or $d = \lambda f,\lambda \in F^*$.
If $d = \lambda f$, then $f =\lambda^{-1} d$ divides $f'$. As $f' \neq 0$, $f' = qf$ implies that $\deg(f) = n \leq \deg(f') \leq n-1$ : this is a contradiction.
Thus $d= f\wedge f' = 1$, and then Proposition 5.3.2 shows that $f$ is separable.
\item[(b)]
Suppose now that $f'=0$, where $f = \sum\limits_{i=0}^n a_i x^i$.
Then $0 = f' = \sum\limits_{i=1}^{n} ia_{i} x^{i-1}$, and consequently $ia_i = 0, \ i=1,\cdots,n$. If $p\nmid i, a_i = 0$, thus
$$f = \sum\limits_{0\leq i \leq n,\ p\mid i} a_i x^i = \sum\limits_{k=0}^{\lfloor n/p \rfloor} a_{kp} x^{kp}.$$
If we write $g_1 = \sum\limits_{k=0}^{\lfloor n/p \rfloor} a_{kp} x^{k}$, then $f = g_1(x^p)$.
\item[(c)]
If $g_1$ was reducible, $$g_1 = u v,\ g_1,g_2 \in F[x], 1\leq \deg(u), 1\leq deg(v) .$$
But then $f = g_1(x^p) = u(x^p)v(x^p)$, where $\deg(u(x^p)) = p \deg(u) \geq 1, \deg(v(x^p)) \geq 1$, and so $f$ would be reducible, which contradicts the hypothesis on $f$.
\item[(d)]
If $g_1'\neq 0$, part (a) shows that $g_1$ is separable, and then the wanted conclusion is obtained with $e=1$.
Otherwise the arguments of parts (b) and (c) shows that there exits an irreducible polynomial $g_2 \in F[x]$ such that $g_1 = g_2(x^p)$, so $f = g_2(x^{p^2})$, and so on. While $g'_i \neq 0$, we can build a sequence $g_1,\cdots,g_k$ such that $g_i = g_{i+1}(x^p)$, where $g_i$ irreducible over $F$.
This sequence is necessarily finite, since $\deg(g_{i+1}) = \deg(g_i)/p < \deg(g_i)$.
Thus there exists an integer $e \geq 1$ such that $f = g_1(x^p), g_1 = g_2(x^p), \cdots, g_{e-1} = g_{e}(x^p)$, and $g'_{e} \ne 0$, and so $g = g_e$ is separable.
If we take the induction hypothesis $f = g_k(x^{p^k})$, for $k<e$, (verified for $k=1$) then $f = g_{k+1}((x^{p^k})^p) = g_{k+1}(x^{p \cdot p^k}) = g_{k+1}(x^{p^{k+1}})$.
Hence $f = g_{e}(x^{p^{e}}) = g(x^{p^e})$.
Conclusion: if $F$ is a field of characteristic $p$, and if $f \in F[x]$ is irreducible over $F$, then there exists an integer $e\geq 1$ and an irreducible separable polynomial $g \in k[x]$ such that $f = g(x^{p^e})$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.3.8}
{\it Let $F = k(t,u)$ and $f = (x^2 - t)(x^3 -u)$ be as in Example 5.3.17. Then the splitting field of $f$ contains elements $\alpha,\beta$ such that $\alpha^2 = t$ and $\beta^3 = u$.
\begin{enumerate}
\item[(a)] Prove that $x^2 -t$ is the minimal polynomial of $\alpha$ over $F$. Also show that $x^2 -t$ is separable.
\item[(b)] Similarly, prove that $x^3 -u$ is the minimal polynomial of $\beta$ over $F$, and show that $x^3 - u$ is not separable.
\end{enumerate}
}
\begin{proof}
Here $k$ is a field of characteristic 3.
Let $F = k(t,u)$, where $t,u$ are two variables, $f = (x^2-t)(x^3-u)$, and $\alpha, \beta$ in a splitting field $L$ of $f$ such that $\alpha^2 =t, \beta^3=u$.
\begin{enumerate}
\item[(a)]
The Exercise 4.2.9, applied to the field $k(u)$, shows that $x^2-t$ has no root in $F = k(t,u) = k(u) (t)$, so it is irreducible over $F$. So $x^2 -t$ is the minimal polynomial of $\alpha$ over $F$.
In $L$, $x^2 - t = (x-\alpha)(x+\alpha)$, and $\alpha \neq -\alpha$, otherwise $2 \alpha = 0$, with $2=-1\neq 0$ in $k$, and $\alpha \neq 0$ since $\alpha^2 = t \ne 0$.
Thus the minimal polynomial $x^2 - u \in F[x]$ of $\alpha$ over $F$ is separable, so $\alpha$ is separable.
\item[(b)]
Similarly, $x^3 - u$ has no root in $F=k(t,u) = k(t)(u)$, and its degree is 3, thus it is irreducible over $F$: $x^3-u$ is the minimal polynomial of $\beta$ over $F$.
As the characteristic is 3, $x^3 - u = (x-\beta)^3$, so this polynomial is not separable : $\beta$ is not separable.
\end{enumerate}
So $F\subset L$ is not a separable extension, and is not a purely inseparable extension.
\end{proof}
\paragraph{Ex. 5.3.9}
{\it Let $F$ be a field of characteristic $p$, and consider $f = x^p -a \in F[x]$. We will assume that $f$ has no roots in $F$, so that $f$ is irreducible by Proposition 4.2.6. Let $\alpha$ be a root of $f$ in some extension of $F$.
\begin{enumerate}
\item[(a)] Argue as in Example 5.3.11 that $F(\alpha)$ is the splitting field of $f$ and that ${[F(\alpha):F]=p}$.
\item[(b)] Let $\beta \in F(\alpha) \setminus F$. Use Lemma 5.3.10 to show that $\beta^p \in F$.
\item[(c)] Use parts (a) and (b) to show that the minimal polynomial of $\beta$ over $F$ is $x^p - \beta^p$.
\item[(d)] Conclude that $F\subset F(\alpha)$ is purely inseparable.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
As the characteristic is $p$, $f =x^p -a = (x -\alpha)^p$ has only one root $\alpha$. The splitting field of $f$ over $F$ is so $F(\alpha)$, and $f$ being the minimal polynomial of $\alpha$ over $F$, $[F(\alpha):F] = \deg(f) = p$.
\item[(b)]
Let $\beta \in F(\alpha) \setminus F$. As $\alpha$ is algebraic over $F$, $F(\alpha) = F[\alpha]$ : there exists so a polynomial $p = \sum_{i=0}^d a_i x^i \in F[x]$ such that
$$\beta = p(\alpha) = \sum_{i=0}^d a_i \alpha^i.$$
Then (by Lemma 5.3.10), $$\beta^p = \sum_{i=0}^d a_i^p \alpha^{ip} = \sum_{i=0}^d a_i^p a^{i} \in F .$$
\item[(c)]
Write $b = \beta^p \in F$. Then $\beta$ is a root of $x^p -b \in F[x]$.
As $x^p-b = (x-\beta)^p$, with $\beta \not \in F$, $x^p -b$ has no root in $F$ : by Proposition 4.2.6 $x^p - b$ is irreducible over $F$. Thus $x^p -b = x^p -\beta^p$ is the minimal polynomial of $\beta$ over $F$.
\item[(d)] So every element $\beta \in F(\alpha) \setminus F$ has an inseparable minimal polynomial, thus every $\beta\in F(\alpha) \setminus F$ is inseparable. By definition, the extension $F\subset F(\alpha)$ is purely inseparable.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.3.10}
{\it Suppose that $F$ has characteristic $p$ and $F \subset L$ is a finite extension.
\begin{enumerate}
\item[(a)] Use Proposition 5.3.16 to prove that $F\subset L$ is purely inseparable if and only if the minimal polynomial of every $\alpha \in L$ is of the form $x^{p^e} -a$ for some $e\geq 0$ and $a\in F$.
\item[(b)] Now suppose that $F \subset L$ is purely inseparable. Prove that $[L:F]$ is a power of $p$.
\end{enumerate}
}
\begin{proof}
Suppose that $F$ has characteristic $p$ and $F \subset L$ is a finite extension.
\begin{enumerate}
\item[(a)]
$\bullet$ Suppose that the extension $F \subset L$ is purely inseparable. Let $\alpha$ any element in $L$. $\alpha$ is algebraic over $F$ since $[L : F] < \infty$.
If $\alpha \in F$, the minimal polynomial of $\alpha$ over $F$ is $x-\alpha = x^{p^0} - a$, where $a = \alpha \in F$.
Suppose now that $\alpha \not \in F$. By definition of a purely inseparable extension, the minimal polynomial $f$ of $\alpha$ over $F$ is not separable.
By Proposition 5.3.16 (see Ex. 7), $${f = g(x^{p^e})},\ g \in F[x], e\geq 1,$$where $g$ is a separable irreducible polynomial.
If $\deg(g)>1$, then $g$ has the root $\beta = \alpha^{p^e} \in L$, and $\beta \not \in F$, otherwise $g$ would be divisible by $x-\beta$ and so would be reducible over $F$. As $g$ is irreducible, the minimal polynomial of $\beta$ over $F$ is $g$, which is separable. Thus $\beta$ is separable, and $\beta \not \in F$, in contradiction with the hypothesis "$F \subset L$ is purely inseparable". Hence $\deg(g) = 1$. As $f$ is monic, $g$ is also monic, thus $g = x-a, a \in F$, and $f = x^{p^e} -a$.
So the minimal polynomial over $F$ of every $\alpha \in L$ is of the form $x^{p^e} -a,\ a\in F, e\geq 0$.
$\bullet$ Conversely, suppose that the minimal polynomial over $F$ of every $\alpha \in L$ is of the form $f=x^{p^e} -a, a\in F, e\geq 0$.
If $\alpha \in L \setminus F$, then $e\geq 1$, otherwise $\alpha = a \in F$.
Consequently, $f' = p^e x^{p^e-1} =0$, since $p \mid p^e, e\geq 1$. So $f \wedge f' = f \neq 1$, thus $f$ is not separable. No element of $L \setminus F$ is separable, so the extension $F \subset L$ is purely inseparable.
Conclusion : $F \subset L$ is purely inseparable if and only if the minimal polynomial of every $\alpha \in L$ is of the form $x^{p^e} -a$ for some $e\geq 0$ and $a\in F$.
\item[(b)]
{\bf Lemma.} {\it If $F \subset L$ is a finite purely inseparable extension, and if $F \subset K \subset L$, then $K \subset L$ is purely inseparable.}
{\it Proof (of Lemma)}. Let $\beta \in L\setminus K$, and let $f\in F[x]$ be the minimal polynomial of $\beta$ over $F$, and $f_K \in K[x]$ be the minimal polynomial of $\beta$ over $K$. As $f \in F[x] \subset K[x]$ and $f(\beta) = 0$, $f_K$ divides $f$.
By part (a), $f$ is of the form $f = x^{p^e} -a, a\in F, e\geq 1$. As $f = x^{p^e} - a = x^{p^e} - \beta^{p^e} = (x-\beta)^{p^e}$, $x-\beta$ is the only monic irreducible factor of $f$. Since $f_K \mid f$, $f_K = (x- \beta)^k,\ k\geq 1$. As $\beta \not \in K$, $k\geq 2$, thus $\beta$ is not separable over $K$, and this is true for every $\beta \in L \setminus K$, so $K \subset L$ is a purely inseparable extension.$\qed$.
\bigskip
Suppose now that $F \subset L$ is a purely inseparable extension. As $F \subset L$ is finite, there exists $\alpha_1,\ldots,\alpha_n \in L$ such that $L = F(\alpha_1,\ldots,\alpha_n)$. Let $F_0 = F$ and $F_i = F(\alpha_1, \ldots,\alpha_i),\ 1\leq i \leq n$
Reasoning by induction, suppose that $[F_i : F]$ is a power of $p$. This is true for $i=0$ since $[F_0:F] = [F:F] = 1 = p^0$.
By the preceding Lemma, $L$ is purely inseparable over $F_i$. By part (a) applied to $F_i$, we know that the minimal polynomial $f_{i+1}$ of $\alpha_{i+1}$ over $F_i$ is of the form $f_{i+1} = x^{p^e} -a, a\in F_i, e\geq 0$. Thus $[F_{i+1} : F_i] = [F_{i}(\alpha_{i+1}) : F_i] = \deg(f_{i+1}) = p^e$. Consequently, $[F_{i+1}:F] = [F_{i+1}:F_i][F_i:F] $ is a power of $p$, which conclude the induction.
Finally, $[L:F] = [F(\alpha_1,\ldots,\alpha_n) : F]$ is a power of $p$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 5.3.11}
{\it Let $f \in F[x]$ be nonconstant. We say that $f$ is {\bf squarefree} if $f$ is not divisible by the square of a non constant polynomial in $F[x]$.
\begin{enumerate}
\item[(a)] Prove that $f$ is squarefree if and only if $f$ is a product of irreducible polynomials, no two of which are multiples of each other.
\item[(b)] Assume that $F$ has characteristic $0$. Prove that $f$ is separable if and only if $f$ is squarefree.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Suppose that $f$ is squarefree.
Let $f = f_1\cdots f_r$ a decomposition of $f$ in irreducible factors in $k[x]$.
If two irreducible factors $f_i,f_j, i\neq j$ in this decomposition are associate (i.e. $f_i \mid f_j, f_j \mid f_i$), then $f_j = \lambda f_i, \lambda \in F^*$. Then $f_i^2$ divides $f_if_j$ which divides $f$, and $f$ is not squarefree.
Conversely, suppose that $f$ is not squarefree. Then $f$ is divisible by a square factor $g^2$, where $g$ is a nonconstant polynomial. Let $f_1$ an irreducible factor of $g$. The unicity of the decomposition in irreducible factors shows that any decomposition in irreducible factors contains two factors $g_1,g_2$ associate to $f_1$, so $g_1 \mid g_2, g_2 \mid g_1$.
Conclusion: $f$ is squarefree if and only if $f$ is product of irreducible factors, no two of which are associate.
\item[(b)]
Assume that $F$ has characteristic $0$.
Proposition 5.3.7(c) shows that $f$ is separable if and only if $f$ is product of irreducible factors, no two of which are associate.
By part (a), this is equivalent to $f$ is squarefree.
\end{enumerate}
\bigskip
Note: this equivalence remains true in a finite field.
Counterexample in $F = \F_3(t)$: the polynomial $f= x^3 - t \in \F_3(t)[x]$ is irreducible over $F$, so is squarefree, but if $\alpha$ is a root of $f$ in a splitting field $L$, $x^3 - t = x^3- \alpha^3 = (x-\alpha)^3$ is not separable. This is due to the fact that "squarefree" is a notion which depends on the field: $f$ is squarefree over $F$, not over $L$.
\end{proof}
\paragraph{Ex. 5.3.12}
{\it Prove that $f \in F[x]$ is separable if and only if $f$ is nonconstant and $f$ and $f'$ have no common roots in any extension of $F$.
}
\begin{proof}
By Proposition 5.3.2(c), $f \in F[x]$ is separable if and only if $f$ is nonconstant and $f\wedge f' = 1$.
If $f, f'$ have a common root $\alpha$ in an extension $L$ of $F$, then $x-\alpha$ divides $f$ in $L[x]$, and also $f'$, so divides their gcd in $L[x]$, and so $\mathrm{gcd}(f,f') \ne 1$ (we know that the gcd is the same in $F[x]$ and in $L[x]$).
We have proved that if $f\wedge f' = 1$, then $f,f'$ have no common root in any extension of $F$.
Conversely, if $f \wedge f' \neq 1$, then $f,f'$ have a common nonconstant factor $g \in F[x]$.
Let $L$ an extension of $F$ such that $g$ has a root $\alpha \in F$. Then $\alpha \in L$ is a root of $f$ and $f'$.
Conclusion: $f \in F[x]$ is separable if and only if $f$ is nonconstant and $f$ and $f'$ have no common roots in any extension of $F$.
\end{proof}
\paragraph{Ex. 5.3.13}
{\it Let $F$ have characteristic $p$, and let $F\subset L$ be a finite extension with $p \nmid [L:F]$. Prove that $F \subset L$ is separable.
}
\begin{proof}
Let $\alpha \in L$, and $f$ its minimal polynomial over $F$. Then $F \subset F(\alpha) \subset L$, thus $[F(\alpha) : F] = \deg(f)$ divides $[L:F]$. Consequently $p \nmid \deg(f)$. By Lemma 5.3.6, this implies that $f$ is separable. Hence every $\alpha \in L$ is separable over $F$. The extension $F \subset L$ is so separable.
\end{proof}
\paragraph{Ex. 5.3.14}
{\it Let $F \subset K \subset L$ be field extensions, and assume that $L$ is separable over $F$. Prove that $F \subset K$ and $K \subset L$ are separable extensions.
}
\begin{proof}
By hypothesis, $F\subset K \subset L$, and $L$ is separable over $F$.
$\bullet$ Every element of $L$ is separable over $F$. A fortiori every element of $K$ is separable over $F$, thus $F \subset K$ is separable.
$\bullet$ Let $\alpha$ any element of $L$. As $\alpha$ is separable over $F$, the minimal polynomial $f \in F[x]$ of $\alpha$ over $F$ is separable, thus $f$ has only simple roots in a splitting field $R$ of $f$ over $L$. The minimal polynomial $f_K$ of $\alpha$ over $K$ divides $f$ (since $f(\alpha) = 0$ and $f\in F[x] \subset K[x]$). As $f_K \mid f$, the order of multiplicity of a root of $f_K$ is at most the order of multiplicity of this root in $f$, thus all the roots of $f_K$ in the splitting field $R$ are simple, thus $\alpha$ is separable over $K$. Therefore the extension $K \subset L$ is separable.
\end{proof}
\paragraph{Ex. 5.3.15}
{\it Let $f$ be the polynomial considered in Example 5.3.9. Use Maple or Mathematica to factor $f$ and to verify that the product of the distinct irreducible factors of $f$ is the polynomial given in (5.10).
}