-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter7.tex
2984 lines (2293 loc) · 147 KB
/
Cox_Galois_Chapter7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz}
%\input{8bitdefs}
\graphicspath{ {./figures/} }
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\Gal}{\mathrm{Gal}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\author{Richard Ganaye}
\refstepcounter{section} \refstepcounter{section} \refstepcounter{section} \refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}
\begin{document}
\section{Chapter 7 : THE GALOIS CORRESPONDENCE}
\subsection{GALOIS EXTENSIONS}
\paragraph{Ex. 7.1.1}
{\it Given a finite extension $F \subset L$, and a subgroup $H \subset \Gal(L/F)$, prove that $L_H = \{\alpha \in L \ | \ \forall \sigma \in H, \sigma(\alpha) = \alpha\}$ is a subfield of $L$ containing $F$.
}
\begin{proof}
Let $H \subset \Gal(L/F)$, and $L_H =\{\alpha \in L \ \vert \ \forall \sigma \in H,\, \sigma(\alpha) = \alpha\}$.
We show that $L_H$ is a subfield of $L$ containing $F$.
$\bullet$ By definition of $\Gal(L/F)$, every element $\sigma$ of $H\subset \Gal(L/F)$ satisfies $\sigma(\alpha) = \alpha$ for all $\alpha \in F$, therefore $F \subset L_H$. In particular $1 \in F \subset L_H $, so $L_H \neq \emptyset$.
$\bullet$ If $\alpha, \beta \in L_H$, then
\begin{align*}
\sigma(\alpha - \beta) &= \sigma(\alpha)- \sigma(\beta) = \alpha- \beta,\\
\sigma(\alpha \beta) &= \sigma(\alpha) \sigma(\beta) = \alpha \beta,
\end{align*}
thus $\alpha-\beta, \alpha \beta \in L_H$.
$\bullet$ If $\alpha \in L_H\setminus\{0\}$, $\sigma(\alpha) = \alpha$, thus $\sigma(\alpha^{-1}) = \sigma(\alpha)^{-1} = \alpha^{-1}: \alpha^{-1} \in L_H$.
Conclusion: $L_H$ is a subfield of $L$ containing $F$.
\end{proof}
\paragraph{Ex. 7.1.2}
{\it In the proof of $(c) \Rightarrow (a)$ in Theorem 7.1.1, give the details of how the proof of Theorem 5.2.4 shows that $L$ is the splitting field of $f$ over $F$.
}
\begin{proof}
By hypothesis, the extension $F \subset L$ is finite, normal and separable. As $F \subset L$ is finite, $L = F(\alpha_1,\cdots,\alpha_n)$, where $\alpha_i \in L$ has $p_i$ as minimal polynomial over $F$. If $q_1,\ldots,q_r$ are the distinct elements in the set $\{p_1,\ldots,p_n\}$, then $f = q_1\cdots q_r$ is a product of monic irreducible distinct polynomials (thus $q_i$ is not associate to $q_j$ if $i\ne j$). As in the text, we know by Lemma 5.3.4 that $f$ is separable.
We show that $L$ is the splitting field of $f$ over $F$.
As $q_j = p_i$ for some $i,\ 1\leq i \leq n$, is the minimal polynomial of $\alpha_i \in L$ over $F$, and as $F \subset L$ is normal, then all the roots of $p_i$ are in $L$, so $q_j$ splits completely over $L$, thus $f =\prod_{j=1}^r q_j$ splits completely over $L$. Write $\beta_1,\ldots,\beta_m \in L$ the roots of $f$, and $L'=F(\beta_1,\ldots,\beta_m) \subset L$ the splitting field of $f$ over $F$. As $F \subset L$, and $\beta_1,\ldots,\beta_m \in L$, we know that $L' \subset L$.
As every $\alpha_i,1\leq i \leq n$ is a root of a polynomial $p_i = q_j$, then $\alpha_i$ is a root of $f$, so $\alpha_i = \beta_k$ for some $k,\ 1\leq k \leq m$, thus $\alpha_i \in L'$. Consequently $\{\alpha_1,\ldots,\alpha_n\}\subset \{\beta_1,\ldots,\beta_m\}$ and
$$L = F(\alpha_1,\ldots,\alpha_n) \subset F(\beta_1,\ldots,\beta_m) = L' \subset L :$$
$L=L'$ is the splitting field of $f$ over $F$.
Conclusion: if $F\subset L$ is a finite normal separable extension, $L$ is the splitting field of a separable polynomial in $F[x]$.
\end{proof}
\paragraph{Ex. 7.1.3}
{\it Suppose that $F \subset L$ and that $\alpha, \beta \in L$ are separable over $F$. Prove that $\alpha + \beta, \alpha \beta$, and $\alpha/\beta$ (assuming $\beta \ne 0$) are also separable over $F$.
}
\begin{proof}
Let $\alpha,\beta \in L$ separable over $F$. By Proposition 7.1.6, $F \subset F(\alpha,\beta)$ is a separable extension.
$F(\alpha,\beta)$ being a field, $\alpha + \beta,\alpha \beta \in F(\alpha,\beta)$, and if $\beta \neq 0$, $\alpha/\beta \in F(\alpha,\beta)$, therefore $\alpha + \beta, \alpha \beta, \alpha/\beta$ are separable.
\end{proof}
\paragraph{Ex. 7.1.4}
{\it Let $F \subset L$ be a finite extension, and assume $F$ has characteristic $p$. Then consider the set $K = \{\alpha \in L \ | \ \alpha$ {\rm is separable over} $F\}$.
\be
\item[(a)] Use Proposition 7.1.6 to show that $K$ is a subfield of $L$ containing $F$. Thus $F \subset K$ is a separable extension.
\item[(b)] Use part (c) of theorem 5.3.15 to show that $K \subset L$ is purely inseparable.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $F\subset L$ a finite extension, where $F$ has characteristic $p$, and let
\begin{center}
$K = \{\alpha \in L \ \vert \ \alpha$ is separable over $F\}$.
\end{center}
By Theorem 7.1.6 and Exercise 3 (noting that $1$, root of $x-1$ is in $K$), $K$ is a subfield of $L$. Moreover, every $\alpha\in F$ is root of the irreducible separable polynomial $x-\alpha \in F[x]$, so $\alpha$ is separable , thus $F\subset K$, and $F \subset K$ is a separable extension.
\item[(b)] We show that the extension $K\subset L$ is purely inseparable.
Let $\beta \in L \setminus K$.
If $\beta$ was separable over $K$, then by Theorem 7.1.6, $ K \subset K(\beta)$ would be a separable extension. But $F \subset K$ is also separable, thus by Theorem 5.3.15(c), $F \subset K(\beta)$ would be separable, and then $\beta$ would be separable over $F$, that is $\beta \in K$: this is a contradiction. No $\beta \in L\setminus K$ is separable over $K$, so the extension $K \subset L$ is purely inseparable.
\end{enumerate}
\end{proof}
\paragraph{Ex. 7.1.5}
{\it Prove that the Galois closure of a finite separable extension $F \subset L$ is unique up to an isomorphism that is the identity on $L$.
}
\begin{proof}
Let $M,M'$ two Galois closures of the separable extension $F \subset L$.
By Proposition 7.1.7, there exists a field homomorphism $\varphi : M\to M'$ that is identity on $L$.
As every field homomorphism, $\varphi$ is injective, this is an embedding of $M$ in $M'$. Moreover $\varphi$ is the identity on $L$, so $\varphi$ is a $L$-linear injective application between $M$ and $M'$ as $L$-vector spaces, thus $[M:L] \leq [M':L]$. Exchanging $M$ and $M'$, we prove similarly that $[M':L] \leq [M:L]$, thus $[M':L] = [M:L]$. An injective linear application between two same dimensional vector spaces is bijective, thus $\varphi$ is bijective. Therefore $\varphi$ is a field isomorphism that is the identity on $L$.
The Galois closure of a finite separable extension $F \subset L$ is unique up to an isomorphism that is the identity on $L$.
\end{proof}
\paragraph{Ex. 7.1.6}
{\it In analogy with the Galois closure of a finite separable extension, every finite extension $F \subset L$ has a normal closure, which is essentially the smallest extension of $L$ that is normal over $F$. State and prove the analog of Proposition 7.1.7 for normal closures.
}
\bigskip
{\bf Proposition} : {\it Let $F \subset L$ a finite extension. Then there is an extension $L\subset M$ such that:
\begin{enumerate}
\item[(a)] $F \subset M$ is a finite normal extension.
\item[(b)]Given any other extension $L\subset M'$ such that $M'$ is normal over $F$, there is a field homomorphism $\varphi: M \to M'$ that is the identity on $L$.
\end{enumerate}
}
\begin{proof}
$F \subset L$ is a finite extension, so $L = F(\alpha_1,\ldots,\alpha_n)$, where $\alpha_i \in L$ is algebraic over $F$, with minimal polynomial $p_i \in F[x]$.
Let $f = p_1\cdots p_n$, and $M = L(\beta_1,\ldots,\beta_m)$ the splitting field of $f$ over $L$, where $\beta_1,\ldots,\beta_m$ are the roots of $f$ in $M$.
As the $\alpha_i$ are roots of $p_i$, they are roots of $f$, so $\{\alpha_1,\ldots,\alpha_n\} \subset\{\beta_1,\ldots,\beta_m\}$. Therefore
$$L = F(\alpha_1,\ldots,\alpha_n) \subset F(\beta_1,\ldots,\beta_m) \subset L(\beta_1,\ldots,\beta_m) = M,$$
Thus $F(\beta_1,\ldots,\beta_m)$ contains $L$ and $\beta_1,\ldots,\beta_m$, therefore $M = L(\beta_1,\ldots,\beta_m) \subset F(\beta_1,\ldots,\beta_m)$.
Therefore $M = F(\beta_1,\ldots,\beta_m)$ is the splitting field of $f$ over $F$. Then , by Theorem 5.2.4, the extension $F \subset M$ is normal (and finite), so $M$ satisfies (a).
Let $M' \supset L$ any normal extension of $F$. As $F \subset M'$ is normal, the $p_i$ splits completely over $M'$, thus also $f$. Let $\gamma_1,\ldots,\gamma_m \in M'$ the roots of $f$ in $M'$, and $M'' = F(\gamma_1,\ldots,\gamma_m) \subset M'$. As $\alpha_i \in L \subset M'$, the $\alpha_i$ are roots of $f$ in $M'$ : $\{\alpha_1,\ldots,\alpha_n\}\subset\{\gamma_1,\ldots,\gamma_m\}$, thus $L = F(\alpha_1,\ldots,\alpha_n) \subset F(\gamma_1,\ldots,\gamma_m) = M''$.
$M''$ and $M$ are so two splitting fields of $f$ over $L$. By the unicity of the splitting field (Corollary 5.1.7), there exist a field isomorphism of $M$ in $M''$ that is identity on $L$. Since $M'' \subset M'$, we can regard this isomorphism as an injective field homomorphism $\varphi : M \to M'$.
\end{proof}
\paragraph{Ex. 7.1.7}
{\it Prove that the normal closure of a finite extension $F \subset L$ is unique up to an isomorphism that is the identity on $L$.
}
\begin{proof}
Same proof as in Exercise 5.
Let $M,M'$ two normal closures of the extension $F \subset L$.
By Exercise 6, there exists a field homomorphism $\varphi : M\to M'$ that is identity on $L$.
As every field homomorphism, $\varphi$ is injective, this is an embedding of $M$ in $M'$. Moreover $\varphi$ is the identity on $L$, so $\varphi$ is a $L$-linear injective application between $M$ and $M'$ as $L$-vector spaces, thus $[M:L] \leq [M':L]$. Exchanging $M$ and $M'$, we prove similarly that $[M':L] \leq [M:L]$, thus $[M':L] = [M:L]$. An injective linear application between two same dimensional vector spaces is bijective, thus $\varphi$ is bijective. Therefore $\varphi$ is a field isomorphism that is identity on $L$.
The normal closure of a finite extension $F \subset L$ is unique up to an isomorphism that is the identity on $L$.
\end{proof}
\paragraph{Ex. 7.1.8}
{\it Let $h$ be the polynomial (7.1) used in the proof of $(b) \Rightarrow (c)$ from Theorem 7.1.1. Show that there is an integer $m$ such that
$$\prod_{\sigma \in \Gal(L/F)} (x - \sigma(\alpha)) = h^m.$$
}
\begin{proof}
Here, as in theorem 7.1.1, $F \subset L$ is a normal separable extension.
Let $\alpha \in L$, and $h$ the minimal polynomial of $\alpha$ over $F$. As $L$ is a normal extension of $F$, $h$ splits completely over $L$, so $h = \prod\limits_{i=1}^r(x-\alpha_i)$, where $\alpha_1,\ldots,\alpha_r\in L$, and the $\alpha_i,1\leq i \leq r$ are distinct since $h$ is a separable polynomial.
The Galois group $G = \Gal(L/F)$ acts on the set $S = \{\alpha_1,\cdots,\alpha_r\}$, with the action defined by $\sigma \cdot \gamma = \sigma(\gamma), \sigma \in G,\gamma\in S$.
As $h$ is irreducible over $F$, $G$ acts transitively on $S$, so the orbit ${\cal O}_{\alpha}$ of $\alpha$ is $S$ of cardinality $r$, and $G_\alpha$, the stabilizer of $\alpha$ in $G$ satisfies
$$r = \vert {\cal O}_{\alpha} \vert = (G : G_\alpha).$$
As $F\subset L$ is a Galois extension, the Galois group $G$ has order $n = \vert G \vert = [L:F]$.
Consequently $\vert G_\alpha \vert = n/r$, so $G_\alpha$ is a subgroup of $G$ with index $r$ and cardinality $m:=n/r$.
\bigskip
Note that, or all $\sigma \in G$,
$$\sigma \in G_\alpha \iff \sigma(\alpha) = \alpha \iff \forall \gamma \in F(\alpha), \sigma(\gamma) = \gamma \iff \sigma \in \Gal(L/F(\alpha)).$$
Therefore
$$G_\alpha = \Gal(L/F(\alpha).$$
As $h$ is the minimal polynomial of $\alpha$ over $F$, $[F(\alpha) : F] = \deg(h) = r$.
Since $F \subset L$ is a Galois extension, $F(\alpha) \subset L$ also, so we find again by the Tower Theorem:
$$\vert G_\alpha \vert = \vert \Gal(L/F(\alpha))\vert = [L:F(\alpha)] = [L:F]\, / \,[F(\alpha):F] = n/r.$$
\bigskip
Let $\sigma_1,\ldots,\sigma_r$ a complete system of representants of the left cosets $\sigma G_\alpha, \sigma \in G$. Then the $\sigma_i G_\alpha$ form a partition of $G$ :
$$G = \bigcup_{i=1}^r \,\sigma_i G_\alpha,$$ $$i \neq j \Rightarrow \sigma_i G_\alpha \cap \sigma_j G_\alpha = \emptyset \ (1\leq i,j \leq r).$$
If $\sigma \in \sigma_iG_\alpha$, then $\sigma = \sigma_i \tau, \tau \in G_\alpha$, thus $\sigma(\alpha) =\sigma_i(\tau(\alpha)) = \sigma_i(\alpha)$. Let $\gamma_i =\sigma_i(\alpha)\in S$. The image of $\alpha$ by all the elements of the left coset $\sigma_iG_\alpha$ is a constant equal to $\gamma_i = \sigma_i(\alpha)$. As $\vert \sigma_iG_\alpha \vert = \vert G_\alpha \vert= m$,
$$g = \prod_{\sigma \in G} (x - \sigma.\alpha) = \prod_{i=1}^r \prod_{\sigma \in \sigma_i G_\alpha} (x - \sigma.\alpha) = \prod_{i=1}^r (x-\gamma_i)^m.$$
Moreover $T:=\{\gamma_1,\cdots,\gamma_r\} \subset \{\alpha_1,\cdots,\alpha_r\}$, and the $\gamma_i, 1\leq i \leq r,$ are distinct since
$$\sigma_i(\alpha) = \sigma_j(\alpha) \Rightarrow (\sigma_j^{-1} \sigma_i)(\alpha) = \alpha \Rightarrow \sigma_j^{-1} \sigma_i \in G_\alpha \Rightarrow \sigma_i G_\alpha = \sigma_j G_\alpha \Rightarrow i=j.$$
Moreover $T \subset S, \vert T \vert = \vert S \vert = r$, thus $T = S$.
Consequently
$g = \prod\limits_{i=1}^r (x-\gamma_i)^m = \prod\limits_{i=1}^r (x-\alpha_i)^m = h^m$.
Conclusion: {\it if $F\subset L$ is a Galois extension, $h$ the minimal polynomial of $\alpha \in L$ over $F$ , and $g = \prod\limits_{\sigma \in G} (x - \sigma.\alpha)$, then $g=h^m, m\in \N^*$ (where $m = [L : F(\alpha)]$)}.
\end{proof}
\paragraph{Ex. 7.1.9}
{\it For each of the following extensions, say whether it is a Galois extension. Be sure to say which of our four criteria (the three parts of Theorem 7.1.1 and part (c) of theorem 7.1.5) you are using.
\be
\item[(a)] $\Q \subset \Q(\sqrt{2},\sqrt[3]{2})$.
\item[(b)] $\Q \subset \Q(\alpha,\beta)$, $\alpha, \beta$ distinct roots of $x^3+x^2+2x+1$.
\item[(c)] $\F_p(t^p) \subset \F_p(t)$, $t$ a variable.
\item[(d)] $\C(t+t^{-1}) \subset \C(t)$, $t$ a variable.
\item[(e)] $\C(t^n) \subset \C(t)$, $t$ a variable, $n$ a positive integer.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
$f = x^3-2$ is irreducible over $\Q$, and has a root $\sqrt[3]{2}$ in $\Q(\sqrt{2},\sqrt[3]{2})$, but $\omega \sqrt[3]{2}$ is a non real root of $f$, so is not in $\Q(\sqrt{2},\sqrt[3]{2}) \subset \R$. Consequently, $\Q \subset \Q(\sqrt{2},\sqrt[3]{2})$ is not a normal extension, so is not a Galois extension (Th. 7.1.1(c)).
\item[(b)]
Let $\alpha,\beta,\gamma$ the roots of $f$, where we suppose $\alpha \neq \beta $ (in fact the discriminant of $f$ is $-23$ : the three roots of $f$ are distinct). As $\alpha+\beta+\gamma = -1$, $\gamma = -1 - \alpha - \beta \in \Q(\alpha,\beta)$, thus $\Q(\alpha,\beta) = \Q(\alpha,\beta,\gamma)$ is the splitting field of $f$, therefore $\Q \subset \Q(\alpha,\beta)$ is a normal extension. Moreover the characteristic of $\Q$ is 0, thus this extension is separable (Prop. 5.3.7).
$\Q \subset \Q(\alpha,\beta)$ is a normal and separable extension, so is a Galois extension (Th. 7.1.1(c)).
\item[(c)]$t$ is a root of $f = x^p-t^p = (x-t)^p\in \F_p(t^p)$.
The only root of $f$ is $t$, and $t \not \in \F_p(t^p)$, otherwise $t = u(t^p)/v(t^p)$, where $u,v \in \F_p[t], u \wedge v= 1$. Moreover $u(t)^p = (\sum_{i=0}^d a_i t^i)^p = \sum_{i=0}^d a_i^p t^{ip} = \sum_{i=0}^da_i t^{ip} = u(t^p)$, and similarly for $v$.
Consequently, we would have $t= u(t)^p/v(t)^p,u\wedge v = 1$, which is impossible by Exercise 4.2.9.
The equation $f = x^p - t^p$ has so no root in $\F(t^p)$, where $p =\deg(f)$ is prime. By Proposition 4.2.6, $f$ is irreducible over $\F(t^p)$: $f = (x-t)^p$ is so the minimal polynomial of $t$ over $\F(t^p)$.
The minimal polynomial of $t \in \F(t)$ is not separable, so $\F_p(t)/\F_p(t^p)$ is not a Galois extension.
\item[(d)]
Let $f = x^2-\left(t+\frac{1}{t}\right)x + 1 \in \C(t+t^{-1})[x]$. Then $t$ and $t^{-1}$ are roots of $f$ in $\C(t)$. Moreover $t^{-1} \in \C(t)$, therefore $\C(t) = \C(t,t^{-1})$ is the splitting field of $f$ over $C(t+t^{-1})$. $ \C(t+t^{-1}) \subset \C(t)$ is so a normal extension, and is separable since the characteristic of $\C$, and of $\C(t+t^{-1})$, is zero.
$\C(t+t^{-1}) \subset \C(t)$ is a Galois extension.
\item[(e)]
$t$ is a root of $x^n-t^n = (x-t)(x-\zeta t)\cdots (x-\zeta^{n-1}t) \in \C(t^n)[x]$, where $\zeta = e^{2i\pi}/n$.
As $\zeta^k t \in \C(t), 0\leq k \leq n-1$, $\C(t) = \C(t,\zeta t, \ldots, \zeta^{m-1}t)$ is the splitting field of the polynomial $x^n-t^n \in \C(t^n)[x]$, so $\C(t^n)\subset \C(t)$ is a normal extension. As the characteristic of $\C(t^n)$ is zero, this extension is also separable.
$\C(t^n)\subset \C(t)$ is a Galois extension.
\end{enumerate}
\end{proof}
\paragraph{Ex. 7.1.10}
{\it Prove that $\Q(\omega, \sqrt[3]{2})$ is the Galois closure of $\Q \subset \Q(\sqrt[3]{2})$.
}
\begin{proof}
The minimal polynomial of $\sqrt[3]{2}$ over $\Q$ is $f = x^3 - 2$. By sections 7.1.B, 7.1.C, the Galois closure of the extension $\Q \subset \Q(\omega, \sqrt[3]{2})$ is the splitting field of $f = x^3-2$ over $\Q$ (in $\C$), that is $\Q(\sqrt[3]{2}, \omega \sqrt[3]{2},\omega^2 \sqrt[3]{2}) = \Q(\omega, \sqrt[3]{2})$.
\end{proof}
Note: as a verification, note that the two parts of the definition of the Galois closure are satisfied.
\be
\item[$\bullet$] The extension $\Q \subset\Q(\omega, \sqrt[3]{2})$ is a Galois extension, since $\Q(\omega, \sqrt[3]{2})$ is the splitting field of the separable polynomial $x^3-2$.
\item[$\bullet$] Let $M \supset \Q(\sqrt[3]{2})$ an extension such that $M$ is a Galois extension of $\Q$. As $\sqrt[3]{2} \in M$ and as $\Q \subset M$ is normal, $x^3 -2$ splits completely over $M$:
$$x^3 - 2 =(x-\alpha)(x-\beta)(x-\gamma),\qquad \alpha,\beta,\gamma \in M,$$
where $\alpha = \sqrt[3]{2} \in M$.
$(\beta/\alpha)^3 = 1$, thus $\omega' = \beta/\alpha$ is a cube root of unity in $M$, with $\omega' \ne 1$ since $x^3-2$ is separable. So $\omega'$ is a root in $M$ of $(x^3-1)/(x-1) = x^2+x+1$.
$x^2+x+1$ has degree 2 and has no real root, so has no root in $\Q(\sqrt[3]{2})$, thus $x^2+x+1$ is irreducible over $\Q(\sqrt[3]{2})$. Therefore $\Q(\omega,\sqrt[3]{2}) \subset \C$ and $\Q(\omega',\sqrt[3]{2}) \subset M$ are two splitting fields of $x^2+x+1$ over $\Q(\sqrt[3]{2})$. Therefore there exists an isomorphism $\Q(\omega, \sqrt[3]{2}) \simeq \Q(\omega',\sqrt[3]{2})$ which is the identity on $\Q(\sqrt[3]{2})$, and which sends $\omega$ on $\omega'$, so there exists an embedding of $\Q(\omega,\sqrt[3]{2})$ in $M$ which is the identity on $\Q(\sqrt[3]{2})$.
\ee
\paragraph{Ex. 7.1.11}
{\it Construct the Galois closure of $\Q \subset \Q(\sqrt[4]{2})$.
}
\begin{proof}
By sections 7.1.B,7.1.C, as the minimal polynomial of $\sqrt[4]{2}$ is $x^4 -2$, a Galois closure of $\Q \subset \Q(\sqrt[4]{2})$ is the splitting field of $x^4 -2$ over $\Q$, that is
$$\Q(\sqrt[4]{2},i\sqrt[4]{2}, i^2\sqrt[4]{2}, i^3\sqrt[4]{2}) = \Q(i,\sqrt[4]{2}).$$
\end{proof}
\paragraph{Ex. 7.1.12}
{\it Let $F \subset L$ be an extension of degree 2, where $F$ has characteristic $\ne 2$.
\be
\item[(a)] Show that $L = F(\alpha)$, where $\alpha$ is a root of an irreducible polynomial of degree 2.
\item[(b)] Show that the minimal polynomial of $\alpha$ over $F$ is separable.
\item[(c)] Conclude that $F \subset L$ is a Galois extension with $\Gal(L/F) \simeq \Z/2\Z$.
\item[(d)] By completing the square, show that there is $\beta \in L$ such that $L = F(\beta)$ and $\beta^2 \in F$.
\ee
For $\beta$ as in part (d), let $a = \beta^2 \in F$. Then we can write $\beta = \sqrt{a}$. This shows that if $F$ has characteristic $\ne 2$, then every degree 2 extension of $F$ is obtained by taking a square root.
}
\begin{proof}
Let $F \subset L$ be an extension of degree 2, where $F$ has characteristic $\ne 2$. Then $[L:F] = 2, F\subset L, F\neq L$.
\begin{enumerate}
\item[(a)]
Let $\alpha \in L\setminus F$. Then $(1,\alpha)$ is a linearly independent list, otherwise $\alpha \in F$. As $\dim_F(L) = 2$, $(1,\alpha)$ is a basis of of the $F$-vector space $L$.
Therefore there exists a pair $(a,b) \in F^2$ such that $\alpha^2 = a\alpha+b$, so $\alpha$ is a root of the polynomial $f = x^2 -a x - b \in F[x]$.
$$(x-\alpha)(x-(a-\alpha))= x^2 - ax +\alpha(a-\alpha) = x^2-ax-b = f.$$
The roots of $f$ are so $\alpha$ and $\beta=a-\alpha$, both in $L$.
As $\alpha \not \in F$, $1<[F(\alpha):F] \leq 2$, thus $[F(\alpha):F] = 2 = [L:F]$ with $F[\alpha] \subset L$, therefore $L=F(\alpha)$.
The polynomial $f \in F[x]$ is irreducible over $F$ since $\deg(f)= 2$ and the roots of $f$ are $\alpha\not \in F, a-\alpha \not \in F$. So $f$ is the minimal polynomial of $\alpha$ over $F$.
\item[(b)]
The roots of $f$, minimal polynomial of $\alpha$ over $F$, are $\alpha, \beta$, which are distinct, otherwise $\alpha = a-\alpha$, and then $\alpha= a/2 \in F$ (the characteristic is not equal to 2), which is false. The minimal polynomial of $\alpha$ over $F$ is so separable.
\item[(c)]
As $\beta = a - \alpha, a \in F$, $\beta \in F(\alpha)$, thus $L = F(\alpha)= F(\alpha,\beta)$ is the splitting field of the separable polynomial $f \in F[x]$. Therefore, by Theorem 7.1.1, $F \subset L$ is a Galois extension.
$f$ being irreducible, there exists (Prop. 5.1.8) an isomorphism $\sigma : L \to L$ such that $\sigma(\alpha) = \beta$ and $\sigma$ is the identity on $F$, so $\sigma \in \Gal(L/F)$.
(Explicitly, $\sigma : u+v\alpha \mapsto u+v \beta, \ u,v \in F$: we can verify directly that it is an isomorphism.)
Every $\tau \in \Gal(L/F)$ sends the root $\alpha$ of $f\in F[x]$ on a root of $f$, so $\tau(\alpha) = \alpha=1_K(\alpha)$ or $\tau(\alpha) = \beta = \sigma(\alpha)$. As $L = F(\alpha)$, this $F$-automorphisme is uniquely determined by the image of $\alpha$. Thus $\tau = \sigma$ or $\tau = 1_K = e$. Moreover $\sigma \ne e$, otherwise $\sigma(\alpha) = \alpha$, so $\beta = \alpha$, which is false by part (b). Consequently $G = \{e,\sigma\}$.
Every group of order 2 is isomorphic to $\Z/2\Z$, thus
$$G = \{e,\sigma\} \simeq \Z/2\Z.$$
\item[(d)]
As the characteristic is not 2,
$$0 = \alpha^2 - a\alpha - b = \left(\alpha - \frac{a}{2}\right)^2 -\frac{a^2}{4} - b.$$
Therefore $\gamma = \alpha - \frac{a}{2}$ satisfies $\gamma^2 = \frac{a^2+4b^2}{4} \in F$.
As $\gamma = \alpha - \frac{a}{2}$ with $a\in F$, $F(\gamma) =F(\alpha) = L$. Write $c = \gamma^2 \in F$, and $\sqrt{c} = \gamma$, then
$$L = F(\gamma), \gamma^2 \in F , \qquad L = F(\sqrt{c}) , c \in F.$$
\end{enumerate}
\end{proof}
\subsection{NORMAL SUBGROUPS AND NORMAL EXTENSIONS}
\paragraph{Ex. 7.2.1}
{\it In the diagram (7.3), verify the following.
\be
\item[(a)] $\Q(\sqrt[3]{2})$ has conjugate fields $\Q(\sqrt[3]{2}),\Q(\omega \sqrt[3]{2})$, and $\Q(\omega^2 \sqrt[3]{2})$.
\item[(b)] $\Q(\omega)$ equals all of its conjugates.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
By Section 6.4.A (or Exercises 6.2.2 and 6.3.1), there exists $\sigma,\tau \in \Gal(L/\Q)$ uniquely determined by
$$\sigma(\omega) = \omega, \ \sigma(\sqrt[3]{2}) = \omega \sqrt[3]{2},$$
$$\tau(\omega) = \omega^2, \tau(\sqrt[3]{2}) = \sqrt[3]{2},$$
and $G = \Gal(L/\Q) = \langle \sigma, \tau\rangle$.
Let $K = \Q(\sqrt[3]{2})$. We show that $\sigma K = \Q(\omega \sqrt[3]{2})$.
If $\beta \in \sigma K, \beta = \sigma (\alpha), \alpha \in K = \Q[\sqrt[3]{2}]$, thus $\alpha =p(\sqrt[3]{2}), p \in \Q[x]$, $\beta = \sigma(p(\sqrt[3]{2})) = p(\sigma(\sqrt[3]{2})) =p(\omega \sqrt[3]{2}) \in \Q(\omega \sqrt[3]{2})$, consequently $\sigma K \subset \Q(\omega \sqrt[3]{2})$.
Conversely, if $\beta \in \Q(\omega \sqrt[3]{2}) =\Q[\omega \sqrt[3]{2}]$, $\beta = p(\omega \sqrt[3]{2}),\ p \in \Q[x]$, then $\beta = \sigma(p(\sqrt[3]{2})) =\sigma(\alpha)$, where $\alpha = p(\sqrt[3]{2}) \in \Q(\sqrt[3]{2})$, consequently $ \Q(\omega \sqrt[3]{2})\subset \sigma K$.
$$\sigma K = \Q(\omega \sqrt[3]{2}).$$
As $\sigma^2( \sqrt[3]{2}) = \omega^2 \sqrt[3]{2}$, we obtain similarly
$$\sigma^2 K = \Q(\omega^2 \sqrt[3]{2}),$$
and of course, $eK = K$. So $\Q(\sqrt[3]{2}), \Q(\omega \sqrt[3]{2}),\Q(\omega^2 \sqrt[3]{2})$ are conjugates fields of $K$ over $\Q$.
As $\tau K = K$, and $G = \langle \sigma, \tau\rangle$, they are the only ones.
Conclusion:
the conjugate fields of $\Q(\sqrt[3]{2})$ in the extension $\Q \subset \Q(\sqrt[3]{2})$ are $\Q(\sqrt[3]{2}), \Q(\omega \sqrt[3]{2}),\Q(\omega^2 \sqrt[3]{2})$.
\item[(b)]
As $\sigma(\omega) = \omega$ and as $\sigma$ is the identity on $\Q$, $\sigma \Q(\omega) = \Q(\omega)$. Moreover $\tau \Q(\omega) = \Q(\omega^2)$. Since $\omega^2 = -1 - \omega$, $\Q(\omega^2) = \Q(\omega)$.
As $\sigma \Q(\omega) = \Q(\omega),\tau \Q(\omega) = \Q(\omega)$, and as $G = \langle \sigma, \tau\rangle$, $\lambda \Q(\omega) = \Q(\omega) $ for all $\lambda \in \Gal(L/F)$.
The only conjugate field of $\Q(\omega)$ is so $\Q(\omega)$.
Note: As $\Q \subset \Q(\omega)$ is a quadratic extension, thus a normal extension (Ex. 7.1.12), by Theorem 7.2.5, $K = \sigma K$ for all $\sigma \in \Gal(\Q(\omega, \sqrt[3]{2})/\Q)$. We find again that the only conjugate field of $\Q(\omega)$ is $\Q(\omega)$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 7.2.2}
{\it Complete the proof of Lemma 7.2.4 by showing that
$$\Gal(L/\sigma K) \subset \sigma \Gal(L/K) \sigma^{-1}.$$
}
\begin{proof}
$F \subset K \subset L$.
Let $\tau \in \Gal(L/\sigma K)$. Then $\tau : L \to L$ is an automorphism of $L$, and $\tau(\gamma) = \gamma$ for all $\gamma \in \sigma K$, thus $\tau(\sigma(\alpha)) = \sigma(\alpha)$ for all $\alpha \in K$.
Let $\lambda = \sigma^{-1} \tau \sigma \in \Gal(L/F)$. For all $\alpha \in K$,
\begin{align*}
\lambda(\alpha) &= \sigma^{-1} (\tau(\sigma(\alpha))\\
&= \sigma^{-1}(\sigma(\alpha))\\
&=\alpha.
\end{align*}
Thus $\lambda = \sigma^{-1} \tau \sigma \in \Gal(L/K)$, so $\tau = \sigma \lambda \sigma^{-1} \in \sigma \Gal(L/K) \sigma^{-1}$:
$$\Gal(L/\sigma K) \subset \sigma \Gal(L/K) \sigma^{-1}.$$
As the converse inclusion is proved in section 7.2.A,
$$\Gal(L/\sigma K) = \sigma \Gal(L/K) \sigma^{-1}.$$
\end{proof}
\paragraph{Ex. 7.2.3}
{\it Prove (7.6).
}
\begin{proof}
We prove that $K_1 \subset K_2 \subset L \Rightarrow \Gal(L/K_1) \supset \Gal(L/K_2)$.
Suppose that $K_1 \subset K_2 \subset L$. Let $\sigma \in \Gal(L/K_2)$. Then $\sigma : L \to L$ is an automorphism of $L$ and for all $\alpha \in K_2, \sigma(\alpha) = \alpha$. As $K_1 \subset K_2$, a fortiori $\sigma(\alpha) = \alpha$ for all $\alpha \in K_1$. Consequently, $\sigma \in \Gal(L/K_1)$.
\end{proof}
\paragraph{Ex. 7.2.4}
{\it Verify that applying $K \mapsto \Gal(L/K)$ to (7.3) gives (7.7). Don't forget to include the extreme cases $K = \Q$ and $K = L$.
}
\bigskip
\begin{proof}
\begin{tikzpicture}
\node (S3) at (4,4) {$\Q(\omega,\sqrt[3]{2})$};
\node (A3) at (1,2) {$\Q(\omega)$};
\node (t12) at (3,2) {$\Q(\sqrt[3]{2})$};
\node (t13) at (5,2) {$\Q(\omega \sqrt[3]{2})$};
\node (t23) at (7,2) {$\Q(\omega^2\sqrt[3]{2})$};
\node (id) at (4,0) {$\Q$};
\draw[<-] (S3) edge (A3) edge (t12) edge (t13) edge (t23);
\draw[->] (id) edge (A3) edge (t12) edge (t13) edge (t23);
\end{tikzpicture}
\begin{tikzpicture}
\node (S3) at (4,4) {$\{e\}$};
\node (A3) at (1,2) {$\langle \sigma \rangle$};
\node (t12) at (3,2) {$\langle \tau \rangle$};
\node (t13) at (5,2) {$\langle \sigma^2 \tau \rangle$};
\node (t23) at (7,2) {$\langle \sigma \tau \rangle $};
\node (id) at (4,0) {$\Gal(L/\Q)$};
\draw[->] (S3) edge (A3) edge (t12) edge (t13) edge (t23);
\draw[<-] (id) edge (A3) edge (t12) edge (t13) edge (t23);
\end{tikzpicture}
\bigskip
Here $\sigma, \tau$ are the elements of $G = \Gal(L/\Q)$, where $L = \Q(\omega,\sqrt[3]{2})$, determined by
$$\sigma(\omega) = \omega, \ \sigma(\sqrt[3]{2}) = \omega \sqrt[3]{2},$$
$$\tau(\omega) = \omega^2, \tau(\sqrt[3]{2}) = \sqrt[3]{2}.$$
We show that the map $K \mapsto \Gal(L/\Q)$ applies the left diagram on the right diagram, the inclusion arrows are opposite by Exercise 3.
$\bullet$ If $K = L$, $\Gal(L/L) = \{e\}$, and if $K = \Q$, $\Gal(L/K) = \Gal(L/\Q)=G$.
$\bullet$ If $K = \Q(\omega)$, note that $\sigma(\omega) = \omega$, thus $\sigma(\alpha) = \alpha$ for all $\alpha \in \Q(\omega)$, so $\sigma \in \Gal(L/\Q(\omega))$. Therefore
$$\langle \sigma \rangle = \{e,\sigma,\sigma^2\} \subset \Gal(L/\Q(\omega)).$$
Moreover, as $\Q \subset L$ is a Galois extension, then $K \subset L$ is also Galois for all intermediate fields $K$, therefore $\vert \Gal(L/\Q(\omega)) \vert = [L : \Q(\omega)] = 3$. Consequently
$$\langle \sigma \rangle = \{e,\sigma,\sigma^2\} =\Gal(L/\Q(\omega)).$$
$\bullet$ If $K = \Q(\sqrt[3]{2})$, then $[L:K] = 2 = \vert \Gal(L/K) \vert $, and $\tau \in \Gal(L/K)$, thus
$$\langle \tau \rangle = \{e,\tau\} = \Gal(L/\Q(\sqrt[3]{2})).$$
$\bullet$ If $K = \Q(\omega\sqrt[3]{2})$, with the same reasoning, as $\sigma^2 \tau$ has order 2 and $(\sigma^2 \tau)(\omega \sqrt[3]{2}) = \sigma^2(\omega^2 \sqrt[3]{2}) = \omega^4 \sqrt[3]{2}=\omega \sqrt[3]{2} $,
$$\langle\sigma ^2 \tau \rangle = \{e,\sigma^2\tau\} = \Gal(L/\Q(\omega \sqrt[3]{2})).$$
$\bullet$ If $K = \Q(\omega\sqrt[3]{2})$, we have a similar result, by exchanging $\omega$ with $\overline{\omega} = \omega^2$:
$$\langle \sigma\tau \rangle = \{e,\sigma \tau\} = \Gal(L/\Q(\omega^2 \sqrt[3]{2})).$$
\end{proof}
\paragraph{Ex. 7.2.5}
{\it Prove (7.9) in the proof of Theorem 7.2.7.
}
\begin{proof}
In the context of the proof of Theorem 7.2.7, $F \subset K \subset L$, $L/F$ and $K/F$ are Galois extensions, and $\sigma, \tau \in \Gal(L/F)$.
$\sigma K = K$ by Theorem 7.2.5, thus for all $\alpha \in K$, $\sigma(\alpha) \in K$.
We write here $\sigma\vert_K : K \to K$ the restriction (and corestriction) of $\sigma$ to $K$, defined by $\sigma\vert_K(\alpha) = \sigma(\alpha)$.
For all $\alpha \in K$,
$$(\sigma\vert_{K} \circ \tau\vert_{K})(\alpha) =\sigma\vert_K( \tau\vert_K(\alpha)) = \sigma(\tau(\alpha)) =(\sigma \circ \tau)(\alpha) =( \sigma\circ \tau)\vert_K(\alpha) .$$
Therefore $\sigma \tau \vert_K = (\sigma \circ \tau)\vert_K = \sigma\vert_K \circ \tau\vert_K = \sigma\vert_K\, \tau \vert_K$: the map
$$\Psi :
\left\{
\begin{array}{ccc}
\Gal(L/F) & \to & \Gal(L/K) \\
\sigma & \mapsto & \sigma\vert_K
\end{array}
\right.
$$
is a group homomorphism.
\end{proof}
\paragraph{Ex. 7.2.6}
{\it For the extension $\Q\subset L = \Q(\omega,\sqrt[3]{2})$, we listed some subgroups of $\Gal(L/\Q)$ in diagram (7.7). Prove that this gives all subgroups of $\Gal(L/\Q)$.
}
\begin{proof}
$\langle \sigma \rangle, \langle \tau \rangle,\langle \sigma \tau \rangle, \langle \sigma^2 \tau \rangle, \{e\}, G$ are subgroups of $G=\Gal(\Q(\omega,\sqrt[3]{2})/\Q) \simeq S_3$, corresponding to the subgroups of $S_3$ given by $\langle(1,2,3)\rangle,\langle(1,2)\rangle,\langle(2,3)\rangle,\langle(1,3)\rangle,\{()\}, S_3$. We show that $S_3$ has no other subgroup.
The order of a subgroup $H$ of $S_3$ divides 6. If $\vert H \vert = 1, H = \{()\}$, if $\vert H \vert = 6, H = S_3$. If $\vert H \vert = 3$, $H$ is cyclic of order 3.
As the only elements of order 3 of $S_3$ are $\tilde{\sigma} = (1,2,3)$ and $(1,3,2) = \tilde{\sigma}^{-1}$, $H =\langle \tilde{\sigma} \rangle$.
If $\vert H \vert = 2$, is cyclic of order 2. The only elements of $S_3$ of order 2 are the three transpositions $(1,2),(2,3),(1,3)$. $S_3$, so $H \in \{\langle(1,2)\rangle,\langle(2,3)\rangle,\langle(1,3)\rangle\}$. $S_3$ has exactly 6 subgroups, therefore $\Gal(\Q(\omega,\sqrt[3]{2})/\Q) \simeq S_3$ has exactly six subgroups given in diagram (7.7).
\end{proof}
\paragraph{Ex. 7.2.7}
{\it Suppose that $F \subset K \subset L$, where $L$ is Galois over $F$, and let $\sigma \in \Gal(L/F)$. Show that
$$K = \sigma K \iff \Gal(L/K) = \sigma \Gal(L/K) \sigma^{-1},\ \sigma\ \mathrm{ in }\ \Gal(L/F).$$
}
\begin{proof}
If $\sigma \in \Gal(L/F)$ satisfies $K = \sigma K$, then by Lemma 7.2.4,
$$\sigma \Gal(L/K)\sigma^{-1} = \Gal(L/\sigma K) = \Gal(L/K).$$
Conversely, if $\sigma \in \Gal(L/F)$ satisfies $\sigma \Gal(L/K)\sigma^{-1} = \Gal(L/K)$, then by the same Lemma, $\Gal(L/K) = \Gal(L/\sigma K)$.
As $F\subset L$ is a Galois extension, so are $K \subset L$ and $\sigma K \subset L$, the fixed field of $\Gal(L/K)$ is $K$, and the fixed field of $\Gal(L/\sigma K)$ is $\sigma K$. As these two groups are identical, $K = \sigma K$.
$$\forall \sigma \in \Gal(L/F),\ (K = \sigma K \iff \Gal(L/K) = \sigma \Gal(L/K) \sigma^{-1}).$$
(Consequently
$$(\forall \sigma \in \Gal(L/F), \sigma K = K) \iff \Gal(L/K) \lhd \Gal(L/F)).$$
\end{proof}
\paragraph{Ex. 7.2.8}
{\it Let $H$ be a subgroup of a group $G$, and let $N_G(H) = \{g\in G \ | \ gHg^{-1} = H\}$ be the normalizer of $H$ in $G$, as defined in the Mathematical Notes.
\be
\item[(a)] Prove that $N_G(H)$ is a subgroup of $G$ containing $H$.
\item[(b)] Prove that $H$ is normal in $N_G(H)$.
\item[(c)] Let $N$ be a subgroup of $G$ containing $H$. Prove that $H$ is normal in $N$ if and only if $N \subset N_G(H)$. Do you see why this shows that $N_G(H)$ is the largest subgroup of $G$ in which $H$ is normal?
\item[(d)] Prove that $H$ is normal in $G$ if and only if $N_G(H) = G$.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)] If $x \in H, x H x^{-1} = H$, so $H \subset N_G(H)$.
\be
\item[$\bullet$] $e H e^{-1} = H$, thus $e \in N_G(H)\neq \emptyset$.
\item[$\bullet$] If $x,y \in N_G(H)$, then $(xy) H (xy)^{-1} = x(yHy^{-1})x^{-1} = xHx^{-1} = H$, thus $xy \in N_G(H)$.
\item[$\bullet$] If $x \in N_G(H)$, then $x Hx^{-1} =H$, thus $xH = Hx$, and $H = x^{-1}H x$:
${x^{-1} \in N_G(H)}$.
\ee
$N_G(H)$ is a subgroup of $G$.
\item[(b)]
For all $g \in N_G(H)$, $g H g^{-1} = H$, so $H \lhd N_G(H)$.
\item[(c)]
Let $N$ be a subgroup of $G$, $H \subset N \subset G$.
$ H \lhd N \iff \forall g\in N,\ gHg^{-1} = H \iff \forall g\in N, g \in N_G(H) \iff N \subset N_G(H).$
$H$ is normal in $N_G(H)$, and every subgroup $G$ in which $H$ is normal is contained in $N_G(H)$, so $N_G(H)$ is the largest subgroup of $G$ in which $H$ is normal.
\item[(d)] :
\be
\item[$\bullet$] If $H$ is normal in $G$, then every element of $G$ is in the normalizer of $H$ in $G$, therefore $G \subset N_G(H)$. As $N_G(H) \subset G$, $N_G(H) = G$.
\item[$\bullet$] If $G = N_G(H)$, then every element $g \in G$ is in $N_G(H)$, and so satisfies $gH g^{-1} = H$, so $H$ is a normal subgroup of $G$.
$$ G = N_G(H) \iff H \lhd G.$$
\ee
\end{enumerate}
\end{proof}
\paragraph{Ex. 7.2.9}
{\it Let $F \subset L$ be Galois, and suppose that $F \subset K \subset L$ is an intermediate field. The goal of this exercise is to show that the number of conjugates of $K$ in $L$ is
$$[\Gal(L/F):N] = \frac{|\Gal(L/F)|}{|N|},$$
where $N$ is the normalizer of $\Gal(L/K)$ in $\Gal(L/F)$. More precisely, suppose that the distinct conjugates of $K$ are
$$K = \sigma_1 K,\sigma_2 K,\ldots,\sigma_r K,$$
where $\sigma_1 = e$. Then we need to show that $r = [\Gal(L/F):N]$.
\be
\item[(a)] Show that $\Gal(L/F)$ acts on the set of conjugates $\{\sigma_1 K,\sigma_2 K,\ldots,\sigma_r K\}$.
\item[(b)] Show that the isotropy subgroup of $K$ is the normalizer subgroup $N$.
\item[(c)] Explain how $r = [\Gal(L/F):N]$ follows from the Fundamental Theorem of Group Actions (Theorem A.4.9 from Appendix A).
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Write $O = \{\sigma_1 K, \sigma_2 K,\cdots,\sigma_r K\}$ the set of conjugate fields of $K$ and $r = \vert O \vert $.
If $\sigma \in \Gal(L/F)$, and $M = K_j = \sigma_j K \in O,1\leq j \leq r$, write $\sigma \cdot M = \sigma M = \sigma K_j$ :
$$\sigma\cdot K_j = \sigma \cdot (\sigma_j K) = (\sigma \circ \sigma_j) K.$$
Therefore $\sigma \cdot M = \sigma\cdot K_j$ is a conjugate field of $K$, so
$$M \in O \Rightarrow \sigma \cdot M\in O.$$
Moreover, for all $M \in O , e \cdot M = e M = M$, and if $\sigma,\tau \in \Gal(L/F), \sigma \cdot (\tau \cdot M) = \sigma(\tau M) = (\sigma \circ \tau)M = (\sigma\circ \tau)\cdot M$.
So $G = \Gal(L/F)$ acts on the set $O = \{\sigma_1 K, \sigma_2 K,\cdots,\sigma_r K\}$ of the conjugate fields of $K$, the action being defined by $\sigma \cdot M= \sigma M \ (\sigma \in \Gal(L/F), M \in O)$.
\item[(b)] Let $G_K$ the stabilizer of $K$ for this action : $G_K = \{\sigma \in G \ \vert \ \sigma K =K\}$.
By Exercise 7, for all $\sigma \in G = \Gal(L/F)$,
$$\sigma K = K \iff \Gal(L/K) = \sigma \Gal(L/K) \sigma^{-1} \iff \sigma \in N.$$
Thus $G_K = N$.
\item[(c)]
The orbit ${\cal O}_K$ of $K$ for the action of $G = \Gal(L/F)$ on $O$ is the whole $O$, since $O$ is by definition the set of conjugate fields of $K$: ${\cal O}_K = O$. the Fundamental Theorem of Group Actions gives then the equality
$$r = \vert {\cal O}_K \vert = [G : G_K] = [\Gal(L/F) : N].$$
The number of distinct conjugate fields of $K$ is so the index $[G : N_G(H)]$ of the normalizer of $H = \Gal(L/K)$ in $G= \Gal(L/F)$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 7.2.10}
{\it In (7.5), explain why $\tau$ is complex conjugation restricted to $\Q(\omega,\sqrt[3]{2})$.
}
\begin{proof}
Let $L = \Q(\omega, \sqrt[3]{2})$.
$\tau$ is the unique $\Q$-automorphism of $G = \Gal(L/\Q)$ such as $$\tau(\omega) = \omega^2, \tau(\sqrt[3]{2}) = \sqrt[3]{2}.$$
If $z\in \C$ is element of $L$, then $z = p(\omega, \sqrt[3]{2})$, where $p(x,y) \in \Q[x,y]$, thus $\overline{z} = p(\overline{\omega}, \sqrt[3]{2}) = p(-1-\omega,\sqrt[3]{2}) \in L$.
Let $\lambda : L \to L, z \mapsto \overline{z}$ the restriction (and corestriction) of the conjugation in $\C$. Then $\lambda$ is an involutive ring homomorphism, thus an automorphism of the field $L$, which is the identity on $\Q$: $\lambda \in \Gal(L/\Q)$.
As
$$\lambda(\omega) = \omega^2, \lambda(\sqrt[3]{2}) = \sqrt[3]{2},$$
and as a $\Q$-automorphism of $L = \Q(\omega, \sqrt[3]{2})$ is uniquely determined by the images of $\omega,\sqrt[3]{2}$, $\tau = \lambda$, so $\tau$ is the complex conjugation restricted to $\Q(\omega, \sqrt[3]{2})$.
\end{proof}
\paragraph{Ex. 7.2.11}
{\it Consider the extension $\Q \subset L = \Q(\sqrt{2},\sqrt{3})$.
\be
\item[(a)] Show that $\Gal(L/\Q) = \{e,\sigma,\tau,\sigma\tau\}$, where
\begin{center}
$
\begin{array}{ll}
\sigma(\sqrt{2}) = \sqrt{2},& \sigma (\sqrt{3}) = -\sqrt{3}, \\
\tau(\sqrt{2}) = -\sqrt{2},& \tau (\sqrt{3}) = \sqrt{3} .
\end{array}
$
\end{center}
\item[(b)] Find all subgroups of $\Gal(L/\Q)$, and use this to draw a picture similar to (7.7).
\item[(c)] For each subgroup of part (b), determine the corresponding subfield of $L$ and use this to draw a picture similar to (7.3).
\item[(d)] Explain why all of the subgroups in part (b) are normal. What does this imply about the subfields in part (c)?
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
We have proved in Exercise 6.1.2 that $\vert \Gal(L/\Q) \vert = 4$, and
$$ \mathrm{Gal}(\Q(\sqrt{2},\sqrt{3})/\Q) =\{1_L, \sigma, \tau, \sigma \tau\}.$$
where
\begin{center}
$
\begin{array}{ll}
\sigma(\sqrt{2}) = \sqrt{2},& \sigma (\sqrt{3}) = -\sqrt{3}, \\
\tau(\sqrt{2}) = -\sqrt{2},& \tau (\sqrt{3}) = \sqrt{3} .
\end{array}
$
\end{center}
and (Ex. 6.2.1) that $G = \Gal(L/\Q) \simeq \Z/2\Z \times \Z/2/Z$.
\item[(b)]
The subgroups of $G = \Gal(L/\Q)$ are
$\{e\}, G, \langle \sigma\rangle = \{e,\sigma\}, \langle \tau\rangle = \{e,\tau\},\langle \sigma \tau \rangle = \{e,\sigma\tau\}.$
\begin{tikzpicture}
\node (S3) at (4,4) {$\{e\}$};
\node (A3) at (1,2) {$\langle \sigma \rangle$};
\node(n) at (4,2) {$\langle \sigma\tau \rangle$};
\node (t23) at (7,2) {$\langle \tau \rangle $};
\node (id) at (4,0) {$\Gal(L/\Q)$};
\draw[->] (S3) edge (A3) edge (n) edge (t23);
\draw[<-] (id) edge (A3) edge (n) edge (t23);
\end{tikzpicture}
\begin{tikzpicture}
\node (S3) at (4,4) {$\Q(\sqrt{2},\sqrt{3})$};
\node (A3) at (1,2) {$\Q(\sqrt{2})$};
\node(n) at (4,2) {$\Q(\sqrt{6})$};
\node (t23) at (7,2) {$\Q(\sqrt{3})$};
\node (id) at (4,0) {$\Q$};
\draw[<-] (S3) edge (A3) edge (n) edge (t23);
\draw[->] (id) edge (A3) edge(n) edge (t23);
\end{tikzpicture}
\vspace{0.5cm}
\item[(c)]
We obtain the right diagram from the left diagram by the map $H \mapsto L_H$. Explicitely:
$L_{\{e\}} = L$, and as $\Q \subset L$ is Galois, $L_G = \Q$.
As $(1,\sqrt{3})$ is a basis of $L$ over $\Q(\sqrt{2})$, a basis of the $\Q$-vector space $L$ is $(1,\sqrt{2},\sqrt{3},\sqrt{6})$. Let $\alpha = a+b\sqrt{2} + c\sqrt{3}+d \sqrt{6}\ (a,b,c,d \in \Q)$ any element of $L$.
Then
\begin{align*}
\sigma(\alpha) = \alpha &\iff a+b\sqrt{2} - c\sqrt{3}-d \sqrt{6} = a+b\sqrt{2} + c\sqrt{3}+d \sqrt{6}\\
&\iff c=d=0\\
&\iff \alpha \in \Q(\sqrt{2})
\end{align*}
thus $L_{\langle \sigma \rangle} = \Q(\sqrt{2})$. We verify similarly $L_{\langle \tau \rangle} = \Q(\sqrt{3})$.
We compute $L_{\langle \sigma \tau \rangle}$:
\begin{align*}
(\sigma\tau)(\alpha) = \alpha &\iff a-b\sqrt{2} - c\sqrt{3}+d \sqrt{6} = a+b\sqrt{2} + c\sqrt{3}+d \sqrt{6}\\
&\iff b=c=0\\
&\iff \alpha \in \Q(\sqrt{6})
\end{align*}
We obtain the left diagram from the right diagram by the map $K \mapsto \Gal(L/K)$. For instance, the only elements of $G$ who fix $\Q(\sqrt{2})$ are $e$ and $\sigma$.
\item[(d)]
$G$ is Abelian, so all its subgroups are normal.
This implies (Theorem 7.2.5) that $\Q(\sqrt{2})$ equals all of its conjugates and so is a normal extension of $\Q$. Same conclusion for $\Q(\sqrt{3}),\Q(\sqrt{6})$.
\end{enumerate}
\end{proof}
\subsection{THE FUNDAMENTAL THEOREM OF GALOIS THEORY}
\paragraph{Ex. 7.3.1}
{\it Complete the proof of Theorem 7.3.1 by showing that $[\Gal(L/F) : H] = [L_H:F]$ for all subgroups $H \subset \Gal(L/F)$.
}
\begin{proof}
By hypothesis, $F \subset L$ is a Galois extension, and $H$ is a subgroup of $\Gal(L/F)$.
The proof of Theorem 7.3.1 shows that $L_H \subset L$ is Galois and $H=\Gal(L/L_H)$, thus $\vert H \vert =|\Gal(L/L_H)| = [L:L_H]$.
Since $F \subset L$ is a Galois extension,
$$\vert \Gal(L/F) \vert =[L:F] = [L:L_H]\,[L_H:F] = \vert H \vert\, [L_H:F], $$
therefore
$$[\Gal(L/F):H] = \vert \Gal(L/F) \vert / \vert H \vert = [L_H:F].$$
\end{proof}
\paragraph{Ex. 7.3.2}
{\it Same as Ex. 6.3.2(b)}.
\begin{proof}
The Exercise 6.3.2(b) proves in details that $\Gal(\Q(i,\sqrt[4]{2})/\Q) = \langle \sigma, \tau\rangle \simeq D_8$, where $\sigma(i) = i, \sigma(\sqrt[4]{2}) = i \sqrt[4]{2}$ and $\tau(i) = -i, \tau(\sqrt[4]{2}) = \sqrt[4]{2}$ ($\tau$ is the complex conjugation restricted to $\Q(i,\sqrt[4]{2})$).
\end{proof}
\paragraph{Ex. 7.3.3}
{\it Let $L = \Q(i,\sqrt[4]{2})$ and $\sigma, \tau \in \Gal(L/\Q)$ be as in Exercise 2 and Example 7.3.4.
\be
\item[(a)] Show that all subgroups of $\Gal(L/\Q)$ are given by (7.13).
\item[(b)] Show that the corresponding fixed fiels are given by (7.14).
\item[(c)] Determine which subgroups in part (a) are normal in $\Gal(L/\Q)$, and for those that are normal, construct a polynomial whose splitting field is the corresponding fixed field.
\item[(d)] For the subfields in part (b) that are not Galois over $\Q$, find all of their conjugates fields. Also describe the conjugates of their corresponding groups.
\ee
}
\begin{center}
\begin{tikzpicture}
\node (n0) at (7,6) {$\{e\}$};
\node (n1) at (1,4) {$\langle \tau \rangle$};
\node (n2) at (4,4) {$\langle \sigma^2 \tau \rangle$};
\node (n3) at (7,4) {$\langle\sigma^2\rangle$};
\node (n4) at (10,4) {$\langle \sigma \tau\rangle$};
\node (n5) at (13,4) {$\langle \sigma^3 \tau\rangle$};
\node (n6) at (4,2) {$\langle \sigma^2, \tau \rangle$};
\node (n7) at (7,2) {$\langle \sigma \rangle$};
\node (n8) at (10,2) {$\langle \sigma^2, \sigma \tau \rangle$};
\node (n9) at (7,0) {$G = \langle \sigma,\tau\rangle$};
\draw[->] (n0) edge (n3) edge (n2) edge (n1) edge (n4) edge (n5);
\draw[<-] (n6) edge (n1) edge (n2) edge (n3);
\draw[<-] (n8) edge (n3) edge (n4) edge (n5);
\draw[->] (n3) edge (n7);
\draw[<-] (n9) edge (n6) edge (n7) edge (n8);
\end{tikzpicture}
\vspace{0.5cm}
\begin{tikzpicture}
\node (n0) at (7,6) {$\Q(i,\sqrt[4]{2})$};
\node (n1) at (1,4) {$\Q(\sqrt[4]{2})$};
\node (n2) at (4,4) {$\Q(i\sqrt[4]{2})$};
\node (n3) at (7,4) {$\Q(i,\sqrt{2})$};
\node (n4) at (10,4) {$\Q((1+i)\sqrt[4]{2})$};
\node (n5) at (13,4) {$\Q((1-i)\sqrt[4]{2})$};
\node (n6) at (4,2) {$\Q(\sqrt{2})$};
\node (n7) at (7,2) {$\Q(i)$};
\node (n8) at (10,2) {$\Q(i\sqrt{2})$};
\node (n9) at (7,0) {$\Q$};
\draw[<-] (n0) edge (n3) edge (n2) edge (n1) edge (n4) edge (n5);
\draw[->] (n6) edge (n1) edge (n2) edge (n3);
\draw[->] (n8) edge (n3) edge (n4) edge (n5);
\draw[<-] (n3) edge (n7);
\draw[->] (n9) edge (n6) edge (n7) edge (n8);
\end{tikzpicture}
\end{center}
\begin{proof}
\begin{enumerate}
\item[(a)]
We obtain the subgroups of $D_8$ and their inclusions with the following GAP instructions:
\begin{verbatim}
S:=Group((1,2,3,4),(1,3));
T:=Group(());
L:=IntermediateSubgroups(S,T).subgroups;
i:=1;
for H in L do
Print(i, " : \t",StructureDescription(H),"\t",Order(H),"\t", H,"\t","\n");
i:=i+1;
od;
Print("inclusions : \n",IntermediateSubgroups(S,T).inclusions);
\end{verbatim}
We obtain:
\begin{verbatim}
1 : C2 2 Group( [ (1,3)(2,4) ] )
2 : C2 2 Group( [ (2,4) ] )
3 : C2 2 Group( [ (1,3) ] )
4 : C2 2 Group( [ (1,2)(3,4) ] )
5 : C2 2 Group( [ (1,4)(2,3) ] )
6 : C2 x C2 4 Group( [ (1,3)(2,4), (2,4) ] )
7 : C4 4 Group( [ (1,3)(2,4), (1,2,3,4) ] )
8 : C2 x C2 4 Group( [ (1,3)(2,4), (1,2)(3,4) ] )
inclusions :
[ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 0, 4 ], [ 0, 5 ], [ 1, 6 ], [ 2, 6 ],
[ 3, 6 ], [ 1, 7 ], [ 1, 8 ], [ 4, 8 ], [ 5, 8 ], [ 6, 9 ], [ 7, 9 ],
[ 8, 9 ] ]
\end{verbatim}
This corresponds to the lattice of subgroups of $G$ written in the first diagram (the node (1) corresponding to the subgroup generated by $\sigma^2 = (1,3)(2,4)$).
We find again these results directly without computer in $$D_8 = \langle \sigma, \tau \rangle = \{e, \sigma, \sigma^2, \sigma^3, \tau, \sigma \tau, \sigma^2 \tau, \sigma^3 \tau\}\simeq G,$$ where $\sigma = (1,2,3,4), \tau = (1,3)$ (cf Ex. 6.3.2(b)). Here the numbering of the roots is $$z_1 = i\sqrt[4]{2},z_2 = - \sqrt[4]{2}, z_3 = -i \sqrt[4]{2}, z_4 = \sqrt[4]{2}, $$so $\tau$, which exchanges $z_1,z_3$ corresponds to the transposition $(1,3)$, and $\sigma$ to the $4$-cycle $(1,2,3,4)$.
$\sigma$ is of order 4 and generates $H =\langle \sigma \rangle =\{e,\sigma, \sigma^2,\sigma^3\}$, $\tau$ is of order 2, and $\sigma \tau = \tau \sigma^{-1} =(1,4)(2,3)$ :
$$\sigma^4 = \tau ^2 = e,\qquad \sigma \tau = \tau \sigma^{-1}.$$
Note that $\tau \sigma = \sigma^{-1} \tau$ and that $\tau \sigma^k = \sigma^{-k} \tau \Rightarrow \tau \sigma^{k+1} = \sigma^{-k} \tau \sigma = \sigma^{-k-1} \tau$. This induction proves that $\tau \sigma^k = \sigma^{-k} \tau$ for all $k \in \N$. Moreover $(\sigma^k \tau)^2 = \sigma^k \tau \sigma^k \tau = \sigma^k \sigma^{-k} \tau \tau =e$, so all the elements of the right coset $H\tau$ are of order 2.
We find all the subgroups of order 2 by checking the elements of order 2 in $D_8$. They are the elements of $H \tau = \{\tau, \sigma \tau, \sigma^2 \tau, \sigma^3 \tau\}$, and also $\sigma^2 \in H$: this gives all the subgroups of level 2 in the first diagram.
We know a subgroup of $G$ of order 4, the subgroup $H = \langle \sigma \rangle$.
Let $M$ be any subgroup of $G$ of order 4. If $M$ is cyclic, it is generated by an element of order 4, so $M = H = \langle \sigma \rangle = \langle \sigma^3 \rangle$.
Otherwise $M$ is isomorphic to $\Z/2\Z \times \Z/2\Z$, generated by to distinct elements of order 2 in $D_8 \simeq G$.
If one of these elements is $\sigma^2$, we obtain the two subgroups
\begin{align*}
H_1 &= \langle \sigma^2, \tau\rangle =\{e, \sigma^2,\tau,\sigma^2\tau\} = \langle \sigma^2, \sigma^2 \tau\rangle\\
H_2 &= \langle \sigma^2, \sigma \tau\rangle =\{e, \sigma^2,\sigma \tau,\sigma^3\tau\}= \langle \sigma^2, \sigma^3 \tau\rangle.\\
\end{align*}
Otherwise $M = \langle \sigma^k \tau ,\sigma^l \tau\rangle,\ 0\leq k,l \leq 3,k\neq l$. As $\sigma^k\tau \sigma^l \tau = \sigma^{k-l} \in H$ is of order 2, $\sigma^{k-l} = \sigma^2$ and so
$$M = \{e, \sigma^k \tau, \sigma^l \tau, \sigma^{2} \}.$$
Since $\Z/2\Z \times \Z/2\Z$ is generated by any pair of elements not equal to $e$, $M = \langle \sigma^2, \sigma^k \tau\rangle$, thus $M = H_1$ or $M = H_2$. We find again the subgroups of diagram 1.
\item[(b)]
We find the fixed fields $L_M$ corresponding with the subgroups $M$ of $G$.
Consider the chain of fields going from $\Q$ to $L$ :
$$\Q\subset \Q(\sqrt{2}) \subset \Q(i\sqrt[4]{2}) \subset \Q(i\sqrt[4]{2}, \sqrt[4]{2})= \Q(i,\sqrt[4]{2}) = L,$$
where each field is a quadratic extension of the preceding field.
Write $$\alpha = \sqrt{2}, \beta = -i\sqrt[4]{2}, \gamma =\sqrt[4]{2}$$
(the symbol $-$ for $\beta$ is intended for obtaining $\sigma(\beta) = \gamma$). If we number the roots of $x^4-2$ by $x_1 = \beta, x_2 = \gamma, x_3 = -\beta, x_4 = -\gamma$, the permutations corresponding to $\sigma, \tau$ are $\tilde{\sigma} = (1,2,3,4), \tilde{\tau} = (1,3)$, with $D_8 = \langle(1,2,3,4),(1,3)\rangle$).
Then $(1,\alpha)$ is a basis $\Q(\sqrt{2})$ over $\Q$, $(1,\beta)$ a basis of $\Q(i\sqrt[4]{2})$ over $\Q(\sqrt{2})$, and $(1,\gamma)$ a basis of $\Q(i\sqrt[4]{2}, \sqrt[4]{2})$ over $\Q(i\sqrt[4]{2})$, thus
$${\cal B} = (1,\alpha, \beta, \gamma, \alpha \beta, \alpha \gamma, \beta \gamma, \alpha \beta \gamma)$$
is a basis of $L$ over $\Q$.
Recall that (see Ex. 6.3.2(b))
$$\sigma(i)=i, \sigma(\sqrt[4]{2}) = i \sqrt[4]{2},$$
$$ \tau(i) = -i, \tau(\sqrt[4]{2}) = \sqrt[4]{2}.$$
Consequently, $\sigma(\sqrt{2}) = (\sigma(\sqrt[4]{2}))^2 = - \sqrt{2}$,
\begin{align*}
\sigma(\alpha) &=- \alpha,\sigma(\beta) = \gamma, \sigma(\gamma) = -\beta,\\
\tau(\alpha) &= \alpha, \tau(\beta) =- \beta, \tau(\gamma) = \gamma.
\end{align*}
Every element $ z \in L$ spans on the basis ${\cal B}$ under the form
$$z = a_1+a_2 \alpha + a_3 \beta + a_4 \gamma + a_5 \alpha \beta + a_6 \beta \gamma + a_7 \alpha \gamma + a_8 \alpha \beta \gamma$$
(where $ a_i \in \Q$)
\be
\item[$\bullet$] Computation of $L_{\langle \sigma\rangle }$
\begin{align*}
z &= a_1+a_2 \alpha + a_3 \beta + a_4 \gamma + a_5 \alpha \beta + a_6 \beta \gamma + a_7 \alpha \gamma + a_8 \alpha \beta \gamma\\
\sigma(z) &= a_1 - a_2 \alpha + a_3 \gamma - a_4 \beta -a_5 \alpha \gamma - a_6 \beta \gamma + a_7 \alpha \beta + a_8 \alpha \beta \gamma
\end{align*}
\begin{align*}
z \in L_{\langle \sigma\rangle } &\iff 0 = z - \sigma(z)\\
&\iff 0=2a_2\alpha+(a_3+a_4)\beta + (-a_3+a_4)\gamma+(a_5-a_7) \alpha \beta + (a_7+a_5)\alpha \gamma + 2a_6 \beta \gamma\\
&\iff a_2=a_3=a_4=a_5=a_6=a_7=0\\
&\iff z = a_1 + a_8 \alpha \beta \gamma, \quad a_1,a_8 \in \Q\\
&\iff z \in \Q[\alpha \beta \gamma]
\end{align*}
$$L_{\langle \sigma \rangle } = \Q(\alpha \beta \gamma) = \Q(i)$$
As expected, this is a quadratic extension of $\Q$, corresponding with a subgroup of index 2 in $G$.
\item[$\bullet$] Computation of $L_{\langle \tau\rangle}$
\begin{align*}
z &= a_1+a_2 \alpha + a_3 \beta + a_4 \gamma + a_5 \alpha \beta + a_6 \beta \gamma + a_7 \alpha \gamma + a_8 \alpha \beta \gamma\\
\tau(z) &= a_1 + a_2\alpha-a_3 \beta+a_4 \gamma-a_5 \alpha \beta -a_6 \beta \gamma +a_7 \alpha \gamma - a_8 \alpha \beta \gamma
\end{align*}
\begin{align*}
z \in L_{\langle \tau \rangle} & \iff 0 = z -\tau(z)\\
&\iff 0 = a_3=a_5=a_6=a_8=0\\
&\iff z = a_1+a_2 \alpha + a_4 \gamma + a_7 \alpha \gamma \ (a_i \in \Q)\\
&\iff z \in \Q(\alpha,\gamma)\\
&\iff z \in \Q(\gamma)
\end{align*}
(indeed $\alpha \in \Q(\gamma)$).
$$L_{\langle \tau \rangle}= \Q(\gamma) = \Q(\sqrt[4]{2}).$$
\item[$\bullet$] Computation of $L_{\langle\sigma^2\rangle}$
$$\sigma^2(\alpha) = \alpha, \sigma^2(\beta) = -\beta, \sigma^2(\gamma) = -\gamma.$$
\begin{align*}
z &= a_1+a_2 \alpha + a_3 \beta + a_4 \gamma + a_5 \alpha \beta + a_6 \beta \gamma + a_7 \alpha \gamma + a_8 \alpha \beta \gamma\\
\sigma^2(z) &= a_1+a_2\alpha -a_3 \beta -a_4 \gamma -a_5 \alpha \beta + a_6 \beta \gamma -a_7 \alpha \gamma +a_8 \alpha \beta \gamma
\end{align*}
\begin{align*}
z \in L_{\langle \sigma^2 \rangle} & \iff 0 = z -\sigma^2(z)\\
&\iff 0 = a_3=a_4=a_5=a_7\\
&\iff z = a_1+a_2 \alpha + a_6 \beta \gamma + a_8 \alpha \beta \gamma \ (a_i \in \Q)\\
&\iff z \in \Q(\alpha,\beta \gamma)\\
\end{align*}
$$L_{\langle \sigma^2 \rangle} = \Q(\alpha,\beta \gamma) =\Q(\sqrt{2},i\sqrt{2}) = \Q(i,\sqrt{2})$$
\item[$\bullet$] Computation of $L_{\langle \sigma^2 \tau \rangle}$
$$( \sigma^2\tau)(\alpha) = \alpha, (\sigma^2\tau)(\beta) = \beta, (\sigma^2\tau)(\gamma) = -\gamma$$
\begin{align*}
z &= a_1+a_2 \alpha + a_3 \beta + a_4 \gamma + a_5 \alpha \beta + a_6 \beta \gamma + a_7 \alpha \gamma + a_8 \alpha \beta \gamma\\
(\sigma^2\tau)(z) &= a_1+a_2\alpha +a_3 \beta -a_4 \gamma +a_5 \alpha \beta - a_6 \beta \gamma -a_7 \alpha \gamma -a_8 \alpha \beta \gamma
\end{align*}
\begin{align*}
z \in L_{\langle \sigma^2\tau \rangle} &\iff 0 = z -(\sigma^2\tau)(z)\\