-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter9.tex
1598 lines (1237 loc) · 75.1 KB
/
Cox_Galois_Chapter9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{tikz}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\im}{\,\mathrm{Im}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\Gal}{\mathrm{Gal}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\author{Richard Ganaye}
\refstepcounter{section} \refstepcounter{section} \refstepcounter{section} \refstepcounter{section}
\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}\refstepcounter{section}
\begin{document}
\section{Chapter 9 : CYCLOTOMIC EXTENSIONS}
\subsection{CYCLOTOMIC POLYNOMIALS}
\paragraph{Ex. 9.1.1}
{\it Prove that a congruence class $[i] \in \Z/n\Z$ has a multiplicative inverse if and only if $\mathrm{gcd}(i,n) = 1$. Conclude that $(\Z/n\Z)^*$ has order $\phi(n)$. Be sure you understand what happens when $n=1$.
}
\begin{proof}
If $[i]$ has a multiplicative inverse in the ring $\Z/n\Z$, then there exists $[j] \in \Z/n\Z$ such that $[i][j] = [ij] = 1$, so $ij \equiv 1\ [n]$. Thus there exists $k\in \Z$ such that $ij - k n =1$. This B\'ezout's relation between $i$ and $n$ shows that $i\wedge n=1$.
Conversely, if $i\wedge n=1$, by B\'ezout's Theorem, there exist integers $j,k$ such that $ij-kn=1$, so $[i] [j] = [1]$, and $[i]$ has a multiplicative inverse $\Z/n\Z$.
$$[i] \in (\Z/n\Z)^* \iff i\wedge n=1.$$
The mapping
$$
\left\{
\begin{array}{ccc}
\{i \in \N\ \vert \ 0\leq i <n, i \wedge n = 1\} & \to & (\Z/n\Z)^* \\
i & \mapsto & [i]
\end{array}
\right.
$$
obtained by restriction of the bijection $\gcro 0, n \gcro \to\Z/n\Z ,\ i \mapsto [i]$, is well defined, and this is a bijection.
Therefore $$\vert (\Z/n\Z)^* \vert = \mathrm{Card} (\{i \in \N\ \vert \ 0\leq i <n, i \wedge n = 1\} = \phi(n).$$
If $n = 1$, the ring $\Z/1\Z$ is the trivial ring $\{[0]\}$, where $[0]=[1]$, so the multiplicative group $(\Z/1\Z)^* = \{[1]\}$ has one element, and the set of integers $i$ such that $0 \leq i < 1=n$ is reduced to $\{0\}$, which satisfies $0\wedge 1 = 1$, so $ \phi(1)=1$.
\end{proof}
\paragraph{Ex. 9.1.2}
{\it Assume that $\gcd(n,m) =1$. By Lemma A.5.2, we have a ring isomorphism $\alpha : \Z/nm\Z \simeq \Z/n\Z \times \Z/m\Z$ that sends $[a]_{nm}$ to $([a_n],[a]_m)$. Prove that $\alpha$ induces a group isomorphism $(Z/nm\Z)^* \simeq (\Z/nZ)^* \times (\Z/m\Z)^*$.
}
\begin{proof}
Let $A,B$ are commutative rings (with unity). Then $$(A\times B)^* = A^*\times B^*.$$
Indeed, let $(a,b)\in A\times B$.
\begin{align*}
(a,b) \in (A\times B)^* &\iff \exists (c,d) \in A\times B, \ (a,b)(c,d) = (1,1)\\
&\iff \exists c \in A, \exists d \in B, \ ac=1,bd=1\\
&\iff a\in A^*, b\in B^* \\
&\iff (a,b)\in A^*\times B^*.
\end{align*}
Moreover, if $\varphi : A\to B$ is a ring isomorphism, then for all $a \in A^* \Rightarrow \varphi(a) \in A^*$, since $ab = 1_A \Rightarrow \varphi(a) \varphi(b) = \varphi(1_A) = 1_B$. So we can define
$\psi : A^* \to B^*$ by restriction with $a\mapsto \psi(a) = \varphi(a)$.
$\psi$ is a group homomorphism: if $u,v \in A^*, \psi(uv) = \varphi(uv) = \varphi(u)\varphi(v) = \psi(u)\psi(v)$, and $\psi$ is bijective:
$\bullet\ \varphi$ is injective, so its restriction $\psi$ if also injective.
$\bullet$ If $b\in B^*$, then there exists $d \in B$ such that $bd=1$. If we write $a=\varphi^{-1}(b), c=\varphi^{-1}(d)$, then $b=\varphi(a), d=\varphi(c), 1 = bd = \varphi(ac)$, so $ac = 1, a \in A^*$, thus $b=\psi(a)$, so $\psi$ is surjective.
$$A\simeq B \Rightarrow A^* \simeq B^*.$$
If we apply these two results to the rings $\Z/n\Z, \Z/m\Z$, we obtain
$$(\Z/nm\Z)^* \simeq (\Z/n\Z \times \\Z/m\Z)^* = (\Z/nZ)^* \times (\Z/m\Z)^*.$$
\end{proof}
\paragraph{Ex. 9.1.3}
{\it Let $\zeta_n = e^{2\pi i/n} \in \C$. Prove that $\zeta_n^i$ for $0\leq i <n$ and $\gcd(i,n) = 1$ are the primitive $n$th roots of unity in $\C$.
}
\begin{proof}
Let $\U_n$ be the group of $n$-th roots of unity in $\C$. Then $\U_n = \langle \zeta_n \rangle$, where $\zeta_n = e^{2i\pi/n}$. Write $o(x)$ the order of an element $x\in G$. Then $o(x)= \vert \langle x \rangle \vert$.
Recall that if $d>0$, $o(x)= d \iff (\forall k \in \Z,\ x^k = e \iff d \mid k)$.
For all $i \in \Z$,
$$o(\zeta_n^i)=\frac{n}{n\wedge i}.$$
Indeed, for all $k\in\Z$,
$$(\zeta_n ^i)^k = 1 \iff \zeta_n^{ik} = 1 \iff n \mid ik \iff \frac{n}{n\wedge i} \mid \frac{i}{n\wedge i} k \iff \frac{n}{n\wedge i} \mid k$$
(since $\frac{n}{n\wedge i} \wedge \frac{i}{n\wedge i} = 1$).
So $o(\zeta_n^i)=\frac{n}{n\wedge i}$.
By definition, $\zeta$ is a primitive $n$th root of unity if and only if $\zeta$ is a generator of $\U_n$, if and only if $o(\zeta)= n$, so
$$\U_n = \langle \zeta_n^i \rangle \iff o(\zeta_n^i)= n \iff \frac{n}{n\wedge i} = n \iff n \wedge i = 1.$$
\end{proof}
\paragraph{Ex. 9.1.4}
{\it Let $R$ be an integral domain, and let $f,g\in R[x]$, where $f\ne 0$. If $K$ is the field of fractions of $R$, then we can divide $g$ by $f$ in $K[x]$ using the division algorithm of Theorem A.1.14. This gives $g = qf+r$, though $q,r \in K[x]$ need not lie in $R[x]$.
\be
\item[(a)] Show that dividing $x^2$ by $2x+1$ in $\Q[x]$ gives $x^2 = q\cdot (2x+1) + r$, where $q,r \in \Q[x]$ are not in $\Z[x]$, even though $x^2$ and $2x+1$ lie in $\Z[x]$.
\item[(b)] Show that if $f$ is monic, then the division algorithm gives $g=qf+r$, where $q,r \in R[x]$. Hence the division algorithm works over $R$ provides we divide by monic polynomials.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
$x^2 = (\frac{1}{2}x - \frac{1}{4})(2x+1)+\frac{1}{4}$.
The quotient $q(x) = \frac{1}{2}x - \frac{1}{4}$ is not in $\Z[x]$.
\item[(b)]
Let $f = x^m + b_{m-1}x^{m-1}+ \cdots+b_0$ be a fixed monic polynomial in $R[x]$.
We show by induction on the degree $n$ the proposition
$P(n) : \forall g \in R[x], \deg(g) = n \Rightarrow \exists (q,r) \in R^2, \ g = qf+r,\ \deg(r) < \deg(f)$
(with the convention $\deg(0) = -\infty$).
We suppose that $P(k)$ is true for all $k<n$, and we prove $P(n)$. Let $g$ be any polynomial in $R[x]$.
$\bullet$ If $\deg(g) < m = \deg(f)$, then the pair $(q,r) = (0,g)$ is an answer.
$\bullet$ Suppose that $\deg(g) \geq m$. Write $g = a_n x^n+ a_{n-1}x^{n-1}+ \cdots +a_0$, with $\deg(g) = n \geq m$ and $a_i \in R, i=0,\ldots,n$.
The polynomial $g_1 = g - a_n x^{n-m} f \in R[x]$ satisfies $\deg(g_1) < n$. We can then apply to it the induction hypothesis:
$g_1 = q_1 f+r, q_1 \in R[x],\ r \in R[x],\ \deg(r) < \deg(f)$.
Then $g = (a_n x^{n-m} + q_1) f+ r$.
If we write $q = a_n x^{n-m} + q_1$, then $q \in \mathbb{R}[x]$ and $g = fq+r,\ (q,r) \in\mathbb{R}[x]^2, \deg(r) < \deg(f)$. The pair $(q,r)$ is an answer, and the induction is done.
In particular, if $g,f \in \mathbb{Z}[x]$ , and $g = f q$, the unicity of the Euclidean division in $\mathbb{Q}[x]$ and the preceding result shows that $q \in \mathbb{Z}[x]$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.1.5}
{\it Verify the formula for $\Phi_{105}(x)$ given in Example 9.1.7.
}
\begin{proof}
The factors of $105 = 3\times5\times7$ are $105,35,21,15,7,5,3,1$, thus
$$x^{105} - 1 = \Phi_{105}\,\Phi_{35}\,\Phi_{21}\,\Phi_{15}\, \Phi_7\, \Phi_5\,\Phi_3\,\Phi_1.$$
As $x^{35}-1 = \Phi_{35}\, \Phi_7\, \Phi_5\, \Phi_1$, we obtain
$$x^{105}-1 = (x^{35}-1)\Phi_{105}\, \Phi_{21}\, \Phi_{15}\, \Phi_3,$$
that is
$$x^{70} + x^{35}+1 = \Phi_{105}\,\Phi_{21}\, \Phi_{15}\, \Phi_3.$$
Moreover $x^{21} - 1 = \Phi_{21}\, \Phi_7\, \Phi_3\, \Phi_1$, so
\begin{align*}
\Phi_{21} &= (x^{21}-1)\, \frac{x-1}{x^7-1}\, \frac{x-1}{x^3-1}\, \frac{1}{x-1}\\
&= \frac{x^{21}-1}{(x^7-1)(x^2+x+1)}\\
&=\frac{x^{14} +x^7+1}{x^2+x+1}\\
&=x^{12} - x^{11} + x^9 -x^8 +x^6 -x^4 +x^3 -x+1.
\end{align*}
Similarly $x^{15}-1 = \Phi_{15}\, \Phi_5\, \Phi_3\, \Phi_1$, so
\begin{align*}
\Phi_{15} &= \frac{x^{15}-1}{(x^5-1)(x^2+x+1)}\\
&=\frac{x^{10} +x^5+1}{x^2+x+1}\\
&=x^8 -x^7+x^5 -x^4+x^3 -x+1.
\end{align*}
Therefore
\begin{align*}
\Phi_{105} =& \frac{x^{70} + x^{35} + 1}{\Phi_{21} \Phi_{15} \Phi_3} \\
=& \frac{x^{70} + x^{35} + 1}{x^{22} - x^{21} + x^{19} - x^{18} + x^{17} + x^{12} - x^{11} + x^{10} + x^{5} - x^{4} + x^{3} - x + 1}\\
=&\quad x^{48} + x^{47} + x^{46} - x^{43} - x^{42} - 2 \, x^{41} - x^{40} - x^{39} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32}\\
& + x^{31}- x^{28} - x^{26} - x^{24} - x^{22} - x^{20} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} - x^{9} - x^{8} \\
&- 2 \, x^{7} - x^{6} - x^{5} + x^{2} + x + 1
\end{align*}
\end{proof}
\paragraph{Ex. 9.1.6}
{\it This exercise is concerned with the proof of Lemma 9.1.8.
\be
\item[(a)] Let $f\in \Z[x_1,\ldots,x_n]$ be symmetric. Prove that $f$ is a polynomial in $\sigma_1,\ldots,\sigma_n$ with integer coefficients.
\item[(b)] Let $p$ be prime and let $h \in \F_p[x_1,\ldots,x_n]$. Prove that $h(x_1,\ldots,x_n)^p = h(x_1^p,\ldots,x_n^p)$.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
The algorithm in the proof of Theorem 2.2.2 consists to replace the symmetric polynomial $f$, here with coefficients in $\Z$, by $f_1 = f -c g, f_2 = f -c g -c_1g_1,\cdots$, until we obtain 0. The coefficient $c$ is the leading coefficient of $f$, so it is an integer, and $g= \sigma_1^{a_1-a_2}\cdots \sigma_{n-1}^{a_{n-1}-a_n}\sigma_n^{a_n} \in \Z[\sigma_1,\ldots,\sigma_n]$, so $f_1 \in \Z[x_1,\ldots,x_n]$. The same reasoning applied to $f_1$ and to the following terms shows that $c_i \in \Z$ for all $i$. Therefore $$f = cg+c_1g_1+\cdots+c_{m-1} g_{m-1}\in \Z[\sigma_1,\cdots,\sigma_n].$$
In particular, the symmetric polynomial $\sigma_i(x_1^p,\cdots,x_r^p) - \sigma_i(x_1,\cdots,x_r)^p$ is a polynomial in $\sigma_1,\ldots,\sigma_r$ with integer coefficients:
$$\sigma_i(x_1^p,\cdots,x_r^p) - \sigma_i(x_1,\cdots,x_r)^p = S(\sigma_1,\cdots,\sigma_r) \in \Z[\sigma_1,\cdots,\sigma_r].$$
\item[(b)]
Let $h \in \F_p[x_1,\ldots,x_n]$. Write $$h = \sum_{(i_1,\ldots,i_n) \in A} a_{i_1,\ldots,i_n} x_1^{i_1}\cdots x_n^{i_n},$$
where $A\subset \N^n$ is finite, and the coefficients $a_{i_1,\ldots,i_n} \in \F_p$.
As the characteristic of the field $\F_p(x_1,\cdots,x_r)$ is $p$, using the Little Fermat's Theorem: $a^p= a$ for all $a\in \F_p$,
\begin{align*}
f(x_1,\ldots,x_n)^p &= \left( \sum_{(i_1,\ldots,i_n) \in A} a_{i_1,\ldots,i_n} x_1^{i_1}\cdots x_n^{i_n} \right)^p\\
&=\sum_{(i_1,\ldots,i_n) \in A} a_{i_1,\ldots,i_n}^p x_1^{pi_1}\cdots x_n^{pi_n}\\
&=\sum_{(i_1,\ldots,i_n) \in A} a_{i_1,\ldots,i_n} x_1^{pi_1}\cdots x_n^{pi_n}\\
&=f(x_1^p,\ldots,x_n^p)
\end{align*}
In particular, write $\overline{\sigma}_i$ the projection of $\sigma_i$ in $\F_p[x_1,\cdots,x_r]$, and $\overline{S}$ the projection of $S$.
As the characteristic of the field $\F_p(x_1,\cdots,x_r)$ is $p$,
\begin{align*}
\overline{\sigma}_i(x_1,\cdots,x_r)^p &= \left(\sum_{1\leq j_1 < j_2<\cdots<j_i\leq r} x_{j_1}\cdots x_{j_i}\right)^p\\
&= \sum_{1\leq j_1 < j_2<\cdots<j_i\leq r} x_{j_1}^p\cdots x_{j_i}^p\\
&=\overline{\sigma}_i(x_1^p,\cdots,x_r^p)
\end{align*}
Hence $\overline{S}(\overline{\sigma}_1, \ldots, \overline{\sigma}_r) = \overline{\sigma}_i(x_1^p,\cdots,x_r^p) - \overline{\sigma}_i^p = 0$. Since $\overline{\sigma}_1, \ldots, \overline{\sigma}_r$ are algebraically independant over $\F_p$ (see Ex. 2.2.5), $\overline{S} = 0$, so $S \equiv 0 \pmod p$.
Therefore $p$ divides all the coefficients of $S$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.1.7}
{\it This exercise is concerned with the proof of Theorem 9.1.9.
\be
\item[(a)] Let $\zeta$ be a primitive $n$th root of unity, and let $i$ be relatively prime to $n$. Prove that $\zeta^i$ is a primitive $n$th root of unity and that every primitive $n$th root of unity is of this form.
\item[(b)] Let $\gamma_1,\ldots,\gamma_r$ be distinct primitive $n$th roots of unity and let $i$ be relatively prime to $n$. Prove that $\gamma_1^i,\ldots,\gamma_r^i$ are distinct.
\ee
}
\begin{proof}
Let $\zeta$ be a primitive $n$th root of unity, so $o(\zeta) = n$ (where we write $o(x)$ the order of an element $x$ in a group $G$).
We have proved in Exercise 3 that for all $i\in \Z$,
$$o(\zeta^i) = \frac{n}{n\wedge i}$$
In particular, if $i$ and $n$ are relatively prime ($n \wedge i = 1$), then $o(\zeta^i) = n$, so $\zeta^i$ is a primitive $n$th root of unity.
If $\xi$ is any primitive $n$th root of unity, as $\zeta$ is a generator of $\U_n$, $\xi= \zeta^i, 0 \leq i <n$. As $\zeta^i$ is a primitive $n$th root of unity, $o(\zeta^i)=n = \frac{n}{n\wedge i}$, so $n\wedge i=1$.
\item[(b)]
Let $i \in \Z$ relatively prime to $n$. Consider
$$
\varphi :
\left\{
\begin{array}{ccc}
\U_n& \to &\U_n \\
\lambda& \mapsto & \lambda^i
\end{array}
\right.
$$
$\varphi$ is a group homomorphism.
If $\lambda \in \ker(\varphi)$, then $\lambda = \zeta^k,\ k \in \Z$, and $1 = \lambda^i = \zeta^{ki}$, thus $n\mid ki$. Since $n \wedge i =1$, $n\mid k$, hence $\lambda = \zeta^k = 1$, so $ \ker(\varphi) = \{1\}$.
The group homomorphism $\varphi$ is injective, so the images of the distinct $\gamma_1,\cdots,\gamma_r \in \U_n$ are distinct.
Conclusion: if $i\wedge n = 1$, $\zeta \mapsto \zeta^i$ is a bijection from the set of primitive $n$th roots of unity on itself.
\end{proof}
\paragraph{Ex. 9.1.8}
{\it This exercise will present an alternate proof of (9.8) that doesn't use symmetric polynomials. \begin{center}
(9.8) \qquad If $\zeta$ is a root of f, then so is $\zeta^p$.
\end{center}
where $f$ is an irreducible factor of $\Phi_n$, and $p$ a prime number such that $p\nmid n$.
Assume that $\zeta$ is a root of $f$ such that $f(\zeta^p) \ne 0$.
As in the text, $q(x) \in \Z[x]$ maps to the polynomial $\overline{q}(x) \in \F_p[x]$. Let $g(x)$ be as in (9.7), i.e. $\Phi_n(x) = f(x) g(x)$.
\be
\item[(a)] Prove that $\zeta$ is a root of $g(x^p)$, and conclude that $f(x) \mid g(x^p)$.
\item[(b)] Use Gauss's Lemma to explain why $f(x)$ divides $g(x^p)$ in $\Z[x]$, and conclude that $\overline{f}(x)$ divides $\overline{g}(x^p)$ in $\F_p[x]$.
\item[(c)] Use Exercise 7 to prove that $\overline{g}(x)^p = \overline{g}(x^p)$, and conclude that $\overline{f}(x)$ divides $\overline{g}(x)^p$.
\item[(d)] Now let $h(x) \in \F_p[x]$ be an irreducible factor of $\overline{f}(x)$. Show that $h(x)$ divides $\overline{g}(x)$, so that $h(x)^2$ divides $\overline{f}(x) \overline{g}(x)$.
\item[(e)] Conclude that $h(x)^2$ divides $x^n-1 \in \F_p[x]$.
\item[(f)] Use separability to obtain a contradiction.
\ee
}
\begin{proof}
As in the proof of Theorem 9.1.9, the Gauss's Lemma in the form of Corollary 4.2.1 allows us to assume that there exists a polynomial $f(x)\in \Z[x]$ of $\Phi_n(x)$ such that
$\Phi_n(x) = f(x) g(x),\ f(x),g(x) \in \Z[x]$, where $f$ is monic and irreducible over $\Q$. Let $p$ be a prime number such that $p\nmid n$.
Reasoning by contradiction, we suppose that $\zeta$ is a root of $f$ such that $f(\zeta^p)\neq 0$.
\begin{enumerate}
\item[(a)] As $\zeta$ is the root of $f$, where $f$ divides $\Phi_n$, $\zeta$ is a $n$th primitive root of unity. Since $p\nmid n, p\wedge n=1$, hence $\zeta^p$ is also a $n$th primitive root of unity by Exercise 7(a), therefore $0 = \Phi(\zeta^p) = f(\zeta^p) g(\zeta^p)$. As $f(\zeta^p) \neq 0$, $g(\zeta^p)=0$, so
\begin{center}
$\zeta$ is a root of $g(x^p)$.
\end{center}
As $f$ is irreducible, $f$ is the minimal polynomial of $\zeta$ over $\Q$, and $\zeta$ is a root of $g(x^p) \in \Q[x]$, hence
$$f(x) \mid g(x^p).$$
\item[(b)]
As $f$ is monic, the refined division algorithm of Exercise 4 show that the quotient $q(x)$ of $g(x^p)$ by $f(x)$ lies in $\Z[x]$, so $f(x)$ divides $g(x^p)$ in $\Z[x]$.
The projection homomorphism on $\F_p[x]$ gives $\overline{g}(x^p) = \overline{f}(x) \overline{q}(x)$, thus $\overline{f}(x)$ divides $\overline{g}(x^p)$ in $\F_p[x]$.
\item[(c)]
As the characteristic of $\F_p(x)$ is $p$, writing $\overline{g}(x) = \sum\limits_{i=0}^r a_i x^i \in \F_p[x]$, then (as in Exercise 7)
$$\overline{g}(x)^p =\left( \sum\limits_{i=0}^r a_i x^i\right)^p = \sum\limits_{i=0}^r a_i^p x^{ip} = \sum\limits_{i=0}^r a_i x^{ip} = \overline{g}(x^p).$$
Therefore $\overline{f}(x)$ divides $\overline{g}(x)^p$ in $\F_p[x]$.
\item[(d)] Let $h(x) \in \F_p[x]$ an irreducible factor of $\overline{f}(x)$. Then $h(x) \mid \overline{g}(x)^p$. Since $h$ is irreducible (hence prime) in $\F_p[x]$, then $h \mid \overline{g}$.
$h(x) \mid \overline{f}(x), h(x) \mid \overline{g}(x)$, so $h(x)^2 \mid \overline{f}(x)\overline{g}(x)$.
\item[(e)]
Therefore $h^2 \mid\overline{\Phi}_n$, and $\overline{\Phi}_n \mid x^n-1$, thus $h^2 \mid x^n-1\in F_p[x]$.
\item[(f)] As $\deg(h)>1$, every root of $h$ in the splitting root of $x^n-1\in \F_p[x]$ is not a simple root, thus $x^n-1$ would not be separable.
But $n$ is relatively prime to $p$, so $(x^n-1)' = nx^{n-1}$ is relatively prime to $x^n-1$, and so $x^n-1 \in \F_p[x]$ is separable: this is a contradiction, therefore.
$$f(\zeta) = 0 \Rightarrow f(\zeta^p)=0.$$
We conclude that $\Phi_n$ is irreducible as in the conclusion of the proof of Theorem 9.1.9.
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.1.9}
{\it In proving Fermat's Little Theorem $a^p\equiv a \pmod p$, recall from the proof of Lemma 9.1.2 that we first proved $a^{p-1} \equiv 1 \pmod p$ when $a$ is relatively prime to $p$. For general $n>1$, Euler showed that $a^{\phi(n)} \equiv 1 \pmod n$ when $a$ is relatively prime to $n$. Prove this. What basic fact from group theory do you use?
}
\begin{proof}
If $a \wedge n = 1$, $[a] \in (\Z/n\Z)^*$.
By Lagrange Theorem, the order of $[a]$ divides the order of the group $(\Z/n\Z)^*$, therefore the order of $a$ divides $ \phi(n) = \vert (\Z/n\Z)^* \vert$, and so $[a]^{\phi(n)} = [1]$.
$$a \wedge n = 1 \Rightarrow a^{\phi(n)} \equiv 1 \ \pmod n.$$
\end{proof}
\paragraph{Ex. 9.1.10}
{\it Prove that a cyclic group of order $n$ has $\phi(n)$ generators.
}
\begin{proof}
More generally, we prove that a cyclic group $G$ of order $n$ has $\phi(d)$ elements of order $d$ if $d \mid n$ (0 otherwise !).
Let $\zeta$ a generator of $G$: $G = \langle \zeta \rangle$.
Every element $\alpha \in G$ is of the form $\zeta^k, 0 \leq k <n$. Recall (see Exercise 3), that
$$o(\zeta^k) = \frac{n}{n\wedge k}.$$
If $d \nmid n$, there is no element of order $d$ by Lagrange's Theorem, and if $d \mid n$,
\begin{align*}
o(\zeta^k) = d &\iff \frac{n}{n\wedge k} = d\\
&\iff \frac{n}{d} = n \wedge k\\
&\iff\exists \lambda \in \Z,\ k = \lambda \frac{n}{d}, \ 0 \leq \lambda < d,\ \lambda \wedge d = 1.
\end{align*}
Indeed, if $\delta = \frac{n}{d} = n \wedge k$, then there exists $\lambda, \mu$, with $\lambda \wedge \mu = 1$, such that
$$
\left\{
\begin{array}{ccc}
n & = & \mu \delta, \\
k & = & \lambda \delta.
\end{array}
\right.
$$
$\mu = n/\delta = d$, so $\lambda \wedge d = 1$. As $0\leq k < n$, $0 \leq \lambda < n/\delta = d$.
Conversely, if $ k = \lambda \frac{n}{d}, \ \lambda \wedge d = 1$, then $$n\wedge k = d\frac{n}{d} \wedge\lambda \frac{n}{d} = (d \wedge \lambda) \frac{n}{d}= \frac{n}{d}.$$
The elements of order $d$ in $G$ are thus the elements $\zeta^k$, where $$k = \lambda \frac{n}{d}, \ 0 \leq \lambda < d,\ \lambda \wedge d = 1.$$
The mapping $\varphi : \{\lambda \in \Z\ \vert \ 0\leq \lambda <d, \lambda \wedge d = 1\} \to \{\alpha \in G \ \vert \ o(\alpha)= d\}$
defined by $\varphi(\lambda) = \zeta^{\lambda \frac{n}{d}}$ is so a bijection.
Hence there exist exactly $\phi(d)$ elements of order $d$ in $G$, for every factor $d$ of $n = \vert G \vert$. In particular, there exist $\phi(n)$ elements of order $n = |G|$ in $G$, hence $\phi(n)$ generators in a cyclic group $G$ of order $n$.
\end{proof}
\paragraph{Ex. 9.1.11}
{\it Prove that $n = \sum_{d\mid n} \phi(d)$.
}
\begin{proof}
Let $G$ a fixed cyclic group of order $n$, by example $G =\U_n$. If $A_d$ is the set of elements of order $d$ in $G$, then $G$ is the disjoint union of the $A_n$, so $\vert G \vert = \sum_{d=0}^n \vert A_d \vert$.
By the proof of Exercise 10, $\vert A_d \vert = \phi(d)$ if $d\mid n$, and $\vert A_d \vert = 0$ if $d\nmid n$, so
$$n = \sum_{d\mid n } \phi(d).$$
Note: as an alternative proof, we can take the degrees in the formula $x^n-1 = \prod_{d\mid n} \Phi_d(n)$.
\end{proof}
\paragraph{Ex. 9.1.12}
{\it Here are some further properties of cyclotomic polynomials.
\be
\item[(a)] Given $n$, let $m =\prod_{d\mid n} p$. Prove that $\Phi_n(x) = \Phi_m(x^{n/m})$. This shows that we can reduce computing $\Phi_n(x)$ to the case when $n$ is squarefree.
\item[(b)] Let $n>1$ be an odd integer. Prove that $\Phi_{2n}(x) = \Phi_n(-x)$.
\item[(c)] Let $p$ be a prime not dividing an integer $n>1$. Prove that $\Phi_{pn}(x) = \Phi_n(x^p)/\Phi_n(x)$.
\ee
}
{\bf Lemma.} {\it Let $f(x),g(x) \in \C[x]$ be two monic polynomials in $\mathbb{Q}[x]$, of same degree $d$, and $f$ separable.
If every root of $f$ in $\mathbb{C}$ is a root of $g$, then $f=g$.}
{\it Proof of the Lemma.}
As $f(x)$ is monic separable of degree $d$, the decomposition in irreducible factors of $f(x)$ in $\mathbb{C}[x]$ is
$$ f(x) = \prod_{\alpha \in S} (x-\alpha)$$
The hypothesis implies that for all $\alpha \in S$, $x-\alpha \mid g(x)$, hence $f(x) \mid g(x)$. As $\deg(f) = \deg(g)$, and as $f,g$ are monic, then $f=g$.
\qed
\begin{proof}
\begin{enumerate}
\item[(a)]
$n = p_1^{\nu_1} p_2^{\nu_2}\cdots p_r^{\nu_r}$. Write $m = p_1\cdots p_r$. Then
$\deg(\Phi_n(x)) = \phi(n) = p_1^{\nu_1-1} p_2^{\nu_2-1}\cdots p_r^{\nu_r-1}(p_1-1)(p_2-1)\cdots (p_r-1)$.
$\deg (\Phi_m(x))) = \phi(p_1 p_2\cdots p_n) = (p_1-1)(p_2-1)\cdots(p_r-1)$, therefore
$\deg (\Phi_m(x^{n/m})) = p_1^{\nu_1-1} p_2^{\nu_2-1}\cdots p_r^{\nu_r-1}(p_1-1)(p_2-1)\cdots (p_r-1) = \deg(\Phi_n(x))$.
Moreover these polynomials are monic and $\Phi_n$ is separable. It remains to show that every root $\zeta$ of $\Phi_n(x)$ is a root of $\Phi_m(x^{n/m})$.
Such a root $\zeta$ has order $n = p_1^{\nu_1} p_2^{\nu_2}\cdots p_r^{\nu_r}$ in the group $\mathbb{C}^*$.
Write $\xi = \zeta^{n/m} = \zeta^{p_1^{\nu_1-1} p_2^{\nu_2-1}\cdots p_r^{\nu_r-1}}$.
Then the order of $\xi$ is $m = p_1p_2\cdots p_r$. Indeed, for all $k \in \mathbb{Z}$,
$\xi^k=1 \iff \zeta ^{k p_1^{\nu_1-1} p_2^{\nu_2-1}\cdots p_r^{\nu_r-1}} = 1 \iff p_1^{\nu_1} p_2^{\nu_2}\cdots p_r^{\nu_r} \mid k p_1^{\nu_1-1} p_2^{\nu_2-1}\cdots p_r^{\nu_r-1}$
$\iff p_1p_2\cdots p_r \mid k$.
Therefore, by definition of $\Phi_m$, $\Phi_{m}(\zeta^{n/m}) = \Phi_{m}(\xi) = 0$.
The hypotheses of the lemma are satisfied, thus
$$\Phi_n(x) = \Phi_{m}(x^{n/m})$$
\item[(b)]
We show that $\Phi_{2n}(x) = \Phi_n(-x)$ ($n>1, n$ odd, so $n\geq 3$).
Note first that $\deg(\Phi_{2n}(x)) = \phi(2n) = \phi(2) \phi(n) = \phi(n) = \deg(\Phi_n(-x))$.
If $n>2$, then $\phi(n)$ is even. Indeed, we can group in pairs the elements of $(\mathbb{Z}/ n \mathbb{Z})^*$, with the pairs $\{[d],-[d]\}$, where $d \wedge n = 1$ and $ [d] \neq -[d]$ since $(n \mid 2d , d \wedge n = 1) \Rightarrow n \mid 2$, which is impossible if $n > 2$. Hence
$$ (-1)^{\phi(n)} = 1\qquad (n>2).$$
$\Phi_{2n}(x)$ is monic by definition, and the leading coefficient of $\Phi_n(-x)$ is $(-1)^{\phi(n)} = 1$, so $\Phi_n(-x)$ is also monic.
Let $\alpha$ be any root of $\Phi_n(-x)$. Then $\alpha = -\zeta$, where $\zeta$ is a $n$th primitive root of unity, so $\zeta$ is an element of order $n$ in the group $\mathbb{C}^*$.
Then the order of $\alpha = -\zeta$ is $2n$. Indeed, for all $k \in \mathbb{Z}$,
$(-\zeta)^k = 1$, that is $(-1)^k \zeta^k = 1$, implies $\zeta^{2k} = 1$, thus $n \mid 2k$, so $n \mid k$ (since $n$ is odd), therefore $\zeta^k = 1, (-1)^k = 1$ and so $2\mid k$.
As $n \wedge 2 = 1, 2n \mid k$.
Conversely, if $2n \mid k, (-\zeta)^{2n} = [(-1)^2]^n [\zeta^n]^2 = 1$.
Conclusion: $(-\zeta)^k = 1 \iff 2n \mid k$, so the order of $\alpha = -\zeta$ is $2n$, hence $x = -\zeta$ is a root of $\Phi_{2n}$.
Every root of $\Phi_n(-x)$ in $\C$ is a root of $\Phi_{2n}(x)$. Moreover $\Phi_n(-x)$ is a separable polynomial, and $\deg(\Phi_{2n}(x)) = \deg(\Phi_n(-x))$. Then the lemma gives the conclusion, for all odd $n$, $n>1$,
$$\Phi_{2n}(x) = \Phi_n(-x)$$
\item[(c)]
We show first that $\Phi_n(x)$ divides $\Phi_n(x^p)$. As $\Phi_n(x)$ is separable, it is sufficient to verify that every root $\zeta$ of $\Phi_n(x)$ is a root of $\Phi_n(x^p)$. Such a root $\zeta$ is a $n$th primitive root of unity, so its order is $n$. Then the order of $\zeta^p$ is also $n$. Indeed, for all $k\in \Z$, as $n\wedge p = 1$,
$$(\zeta^p)^k=1 \iff \zeta^{pk} = 1 \iff n \mid pk \iff n \mid k.$$
Therefore $\zeta^p$ is a root of $\Phi_n$, so $\Phi_n(\zeta^p)=0$ and $\zeta$ is a root of $\Phi_n(x^p)$.
$$\Phi_n(x) \mid \Phi_n(x^p)\quad (p\nmid n).$$
We compare the degrees:
$\deg(\Phi_{pn}(x)) = \phi(pn) =\phi(p)\phi(n) = (p-1)\phi(n)$,
$\deg(\Phi_n(x^p)/\Phi_n(x)) = p \phi(n) - \phi(n) = (p-1)\phi(n)$,
thus
$$\deg(\Phi_n(x^p)/\Phi_n(x)) = \deg(\Phi_{pn}(x)).$$
Moreover, these two polynomials are monic, and $\Phi_{pn}$ is separable.
We show that every root $\zeta$ of $\Phi_{pn}(x)$ is a root of $\Phi_n(x^p)/\Phi_n(x)$.
If $\zeta$ is a root of $\Phi_{pn}(x)$, then $o(\zeta) = pn$, therefore $o(\zeta^p) = n$
(indeed, for all $k\in \Z$, $ (\zeta^p)^k = 1 \iff \zeta^{pk}=1 \iff pn \mid pk \iff n \mid k$).
So $\zeta^p$ is a root of $\Phi_n(x)$, which is equivalent to $\zeta$ is a root of $\Phi_{n}(x^p)$.
As $o(\zeta) = pn$, $\zeta^n \neq 1$, $\Phi_n(\zeta)\neq 0$, therefore $\zeta$ is a root of $\Phi_{n}(x^p)/\Phi_n(x)$.
The hypotheses of the lemma are so satisfied, so
$$\Phi_{pn}(x) = \Phi_n(x^p)/\Phi_n(x) \qquad (p\nmid n).$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.1.13}
{\it We know $\Phi_p(x)$ when $p$ is prime. Use this and Exercise 12 to compute $\Phi_{15}(x)$ and $\Phi_{105}(x)$.
}
\begin{proof}
\begin{enumerate}
\item[(a)]
By Exercise 12(c),
\begin{align*}
\Phi_{15}(x) &= \frac{\Phi_3(x^5)}{\Phi_3(x)}\\
&=\frac{x^{10} +x^5+1}{x^2+x+1}\\
&=x^8 -x^7+x^5 -x^4+x^3 -x+1.
\end{align*}
\item[(b)]
\begin{align*}
\Phi_{105}(x) &= \frac{\Phi_{15}(x^7)}{\Phi_{15}(x)}\\
=& \frac{x^{56} -x^{49}+x^{35} -x^{28}+x^{21} -x^7+1}{x^8 -x^7+x^5 -x^4+x^3 -x+1}\\
=&\quad x^{48} + x^{47} + x^{46} - x^{43} - x^{42} - 2 \, x^{41} - x^{40} - x^{39} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32}\\
&+ x^{31} - x^{28} - x^{26} - x^{24} - x^{22} - x^{20} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} - x^{9} - x^{8}\\
&- 2 \, x^{7} - x^{6} - x^{5} + x^{2} + x + 1
\end{align*}
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.1.14}
{\it The M\"obius function is defined for integers $n\geq 1$ by
$$
\mu(n) =
\left\{
\begin{array}{ll}
1& \mathrm{if} \ n=1, \\
(-1)^s,& \mathrm{if}\ n =p_1\cdots p_s\ \mathrm{for}\ \mathrm{distinct}\ \mathrm{primes}\ p_1, \ldots,p_s \\
0, & \mathrm{otherwise}
\end{array}
\right.
$$
Prove that $\sum_{d \mid n} \mu\left(\frac{n}{d}\right) = 0$ when $n>1$.
}
\begin{proof}
Suppose $n>1$. Write $n =p_1^{\alpha_1} p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ its decomposition in prime factors. The factors $d$ of $n$ such that $\mu(d) \ne 0$ are the integers $d = p_1^{\beta_1} p_2^{\beta_2}\cdots p_k^{\beta_k}$ where $\beta_i = 0,1$. If exactly $r$ exponents $\beta_i$ are non zero, then $\mu(d) = (-1)^r$, and there are $\binom{k}{r}$ such integers $d$.
Therefore $$\sum_{d \vert n} \mu(d) = \sum_{r=0}^{k} (-1)^r \binom{k}{r} = (1-1)^k = 0 $$ (since $k \not = 0$)
Conclusion: if $n \geq 1$,
$$\sum_{d \mid n} \mu\left(\frac{n}{d}\right) = \sum_{d \vert n} \mu(d)=
\left\{
\begin{array}{ll}
0,& \mathrm{if} \ n>1, \\
1, & \mathrm{if}\ n=1.
\end{array}
\right.
$$
\end{proof}
\paragraph{Ex. 9.1.15}
{\it Let $\mu$ be the M\"obius function defined in Exercise 14. Prove that
$$\Phi_n(x) = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}.$$
}
\begin{proof}
Our starting point is $$F(n) = x^n - 1 = \prod\limits_{ d \mid n} \Phi_d \hspace{1cm} (n \geq 1).$$
It is sufficient to copy the proof of the M\"obius Inversion Formula in multiplicative notations:
\begin{align*}
\prod_{d \mid n} (x^d - 1)^{\mu \left (\frac{n}{d} \right )} &= \prod\limits_{e \vert n} (x^{\frac{n}{e}} -1)^{\mu(e)}\\
&= \prod\limits_{e \vert n} \ \prod\limits_ {d \vert \frac{n}{e}} \Phi_d^{ \mu(e) } \\
&=\prod\limits_{d \vert n}\ \prod_{e \vert \frac{n}{d}}\Phi_d^{\mu(e)}
\hspace{1cm} (\mathrm{ since }\ e\vert n \ \mathrm{and} \ d \vert \frac{n}{e} \iff d \vert n\ \mathrm{and} \ e \vert \frac{n}{d}) \\
& = \prod\limits_{d \vert n} \Phi_d^{\sum\limits_{\ e \vert \frac{n}{d}}\mu(e)} \\
&= \Phi_n,
\end{align*}
since by Exercise 14, $\sum_{\ e \vert \frac{n}{d}} \mu(e) \not = 0$ only if $\frac{n}{d}=1$, that is $d =n$, so the product is $\Phi_n$.
Conclusion :
$$\Phi_n(x) = \prod\limits_{d \mid n} (x^d - 1)^{\mu \left (\frac{n}{d} \right )}\quad (n\geq 1).$$
\end{proof}
\paragraph{Ex. 9.1.16}
{\it Let $n$ and $m$ be relatively prime positive integers.
\be
\item[(a)] Prove that $\Q(\zeta_n,\zeta_m) = \Q(\zeta_{nm})$.
\item[(b)] Prove that $\Phi_n(x)$ is irreducible over $\Q(\zeta_m)$.
\ee
}
\begin{proof}
Here we write $\zeta_k = e^{2i\pi/k}$ for all subscript $k$.
\begin{enumerate}
\item[(a)]
$\zeta_n = (\zeta_{nm})^m \in \Q(\zeta_{nm})$, and $\zeta_m = (\zeta_{nm})^n \in \Q(\zeta_{nm})$,therefore
$$\Q(\zeta_n,\zeta_m) \subset \Q(\zeta_{nm}).$$
As $n\wedge m = 1$, there exists integers $u,v$ such that $1=un+vm$.
Therefore $\zeta_{nm} = (\zeta_{nm}^n)^u (\zeta_{nm}^m)^v = \zeta_m^u \zeta_n^v \in \Q(\zeta_n,\zeta_m)$, hence
$$\Q(\zeta_{nm})\subset\Q(\zeta_n,\zeta_m)$$
We have proved
$$\Q(\zeta_{nm})=\Q(\zeta_n,\zeta_m)$$
\begin{center}
\begin{tikzpicture}
\node (nm) at (4,4) {$\Q(\zeta_n,\zeta_m)$};
\node (n) at (2,2) {$\Q(\zeta_n)$};
\node (m) at (6,2) {$\Q(\zeta_m)$};
\node (Q) at (4,0) {$\Q$};
\draw[->] (Q) edge (n) edge (m);
\draw[<-] (nm) edge (n) edge (m);
\end{tikzpicture}
\end{center}
\item[(b)]
By Corollary 9.1.10, $[\Q(\zeta_{nm}): \Q] = \phi(nm)$. As $n \wedge m=1, \phi(nm) = \phi(n) \phi(m)$ (Lemma 9.1.1), so
$[\Q(\zeta_{nm}) : \Q] = \phi(n)\phi(m)$, and by part (a), this is equivalent to
$$[\Q(\zeta_n, \zeta_m) : \Q] = \phi(n)\phi(m).$$
Using the Tower Theorem,
$$\phi(n)\phi(m) = [\Q(\zeta_n, \zeta_m) : \Q] = [\Q(\zeta_n, \zeta_m) : \Q(\zeta_m)]\, [\Q( \zeta_m) : \Q] = \phi(m)[\Q(\zeta_n, \zeta_m) : \Q(\zeta_m)] ,$$thus
$$\phi(n) = [\Q(\zeta_m)( \zeta_n) : \Q(\zeta_m)] .$$
Let $f$ be the minimal polynomial of $\zeta_n$ over $\Q(\zeta_m)$. Then $$\deg(f) = [\Q(\zeta_m)( \zeta_n) : \Q(\zeta_m)] = \phi(n).$$
$\zeta_n$ is a root of $\Phi_n(x)\in \Q[x] \subset \Q(\zeta_m)[x]$, therefore $f \mid \Phi_n$ in $\Q(\zeta_m)[x]$. Moreover these two polynomials are monic of same degree $\phi(n)$, so they are identical. $\Phi_n = f$ is so irreducible over $\Q(\zeta_m)$.
\end{enumerate}
\end{proof}
\subsection{GAUSS AND ROOTS OF UNITY (OPTIONAL)}
\paragraph{Ex. 9.2.1}
{\it Let $G$ be a cyclic group of order $n$ and let $g$ be a generator of $G$.
\be
\item[(a)] Let $f$ be a positive divisor of $n$ and set $e = n/f$. Prove that $H_f = \langle g^e \rangle$ has order $f$ and hence is the unique subgroup of order $f$.
\item[(b)] Let $f$ and $f'$ be positive divisors of $p-1$. Prove that $H_f \subset H_{f'}$ if and only if $f \mid f'$.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
$\bullet$ Let $G$ be a cyclic group of order $n$ and let $g$ be a generator of $G$. If $f$ is a positive divisor of $n$, write $e = n/f$, and $H = \langle g^e\rangle$.
The order of $g$ is $n = ef$, hence the order of $g^e$ is $\frac{n}{n\wedge e} = \frac{n}{e} = f$, therefore the set $A = \{(g^e)^0,\cdots, (g^e)^{f-1}\} \subset \langle g^e \rangle$ has $f$ distinct elements: $\vert A \vert = f$.
Conversely, if $h \in \langle g^e\rangle$, then $h = (g^e)^k, k \in \Z$.
The Euclidean division of $k$ by $f$ gives $k = qf+r, 0 \leq r <f$, thus $h = (g^{ef})^q g^{er} = ({g^e})^r, 0 \leq r <f$, therefore $h \in A$.
Hence $H_f = \langle g^e \rangle = A$ has order $f$.
$$\vert H_f\vert = \vert \langle g^e \rangle \vert = f.$$
\bigskip
$\bullet$ Let $K$ be any subgroup of order $f$. We must prove that $K = H$.
The set $E$ of integers $m>0$ such that $g^m \in K$ is non empty, since $g^n=e \in K$. Set
$$k = \min(E) = \min\{m \in \N^*\ \vert \ g^m \in K\},$$
so $k$ is the least positive integer such that $g^k \in K$. We show that $K = \langle g^k \rangle$.
As $g^k \in K, \langle g^k \rangle \subset K$.
Conversely, if $h \in K$, then $h$ is an element of $G$ of the form $h=g^l, \ l\in \Z$. The Euclidean division of $l$ by $k$ gives $l = qk+r, \ 0 \leq r<k$.
Then $g^r = g^l(g^k)^{-q} = h (g^k)^{-q} \in K$ and $0\leq r < k$. If $r$ was not zero, it would lie in $E$ and would be less than the minimum of $E$. This is a contradiction, so $r=0$, and $h = g^l =(g^k)^{q} \in \langle g^k \rangle$. Therefore $K \subset \langle g^k \rangle$. Finally,
$$K = \langle g^k \rangle.$$
We show first that $k \mid n$. Write $d = k\wedge n$. There exist integers $u,v$ such that $d = uk+vn$, therefore $g^d =(g^k)^u (g^n)^v= (g^k)^u \in K$, so $d \in E$, and $1 \leq d \leq k$, therefore $d = k$ by definition of $k = \min(E)$. So $k = k \wedge n$, hence $k \mid n$.
$K = \langle g^k \rangle$ is cyclic, and its cardinality is the order of $g^k,\ k\mid n$, so
$$ |K| = \langle g^k \rangle = o(g^k)= \frac{n}{k},$$
by the first part of the proof.
By hypothesis the order of $K$ is $f$, so $f = \vert K \vert =n/k$, and $k= n/f= e$.$$K = \langle g^e \rangle = H.$$
Conclusion:
A cyclic group with generator $g$, of order $n=ef$, contains a unique subgroup of order $f$, written $H_f$, which is cyclic, generated by $g^e$.
\item[(b)]
Let $f,f'$ be positive divisors of $p-1 = |(\Z/p\Z)^*|$, and let $g$ a generator of $(\Z/p\Z)^*$. As in the text, write $H_f$ the unique subgroup of $(\Z/p\Z)^*$ of order $f$.
If $H_f \subset H_f'$, then $H_f$ is a subgroup of $H_f'$. By Lagrange's Theorem $\vert H_f \vert$ divides $\vert H_{f'} \vert$, so $f \mid f'$.
Conversely, if $f \mid f'$, $f' = q f, \ q \in \N$. Moreover $H_f = \langle g^e \rangle, H_{f'}= \langle g^{e'} \rangle$, where $n = ef =e'f'$ by part (a). Therefore $e = e'q$, and $g^e = (g^{e'})^q \in H_{f'}$, hence $H_f = \langle g^e \rangle \subset H_{f'}$.
$$f \mid f' \iff H_f \subset H_{f'}.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.2.2}
{\it Prove Proposition 9.2.1.
}
\begin{proof}
Write $\tilde{H}_f$ the subgroup corresponding to $H_f$ by the isomorphism $\Gal(\Q(\zeta_p)/\Q) \simeq (\Z/p\Z)^*$. Then
$$\sigma \in \tilde{H}_f \iff \exists [i] \in H_f, \ \sigma(\zeta_p) = \zeta_p^i,$$ and
$$L_f = \{\alpha \in \Q(\zeta_p)\ \vert \ \forall \sigma \in \tilde{H}_f, \ \sigma(\alpha) = \alpha\}$$
is the fixed field of $\tilde{H}_f$, with $ \Q\subset L_f \subset \Q(\zeta_p)$.
\begin{enumerate}
\item[(a)]
As $G = \Gal(\Q(\zeta_p)/\Q)$ is Abelian ($G$ is cyclic since $(\Z/p\Z)^* \simeq G$ is cyclic for prime $p$), so every subgroup of $G$ is normal, therefore $\Q\subset L_f$ is a Galois extension (Theorem 7.3.2).
Moreover, by the Galois correspondence (Theorem 7.3.1), $[L_f : \Q] = (G:\tilde{H}_f), $ and $(G:\tilde{H}_f) = ((\Z/p\Z)^* : H_f) = (p-1)/f = e$, so
$$[L_f : \Q]=e.$$
$L_f$ is a Galois extension of $\Q$ of degree $e$.
\item[(b)]
By Exercise 1, $f \mid f' \iff H_f \subset H_{f'}$.
As the Galois correspondence is order reversing,
$$f \mid f' \iff H_f \subset H_{f'} \iff \tilde{H}_f \subset \tilde{H}_{f'} \iff L_f \supset L_{f'}.$$
\item[(c)]
Let $f,f'$ be positive divisors of $p-1$ such that $f \mid f'$. Since $G$ is Abelian, $L_{f'} \subset L_f$ is a Galois extension, and by Theorem 7.3.2,
$$\Gal(L_f/L_{f'}) \simeq \Gal(\Q(\zeta_p)/L_{f'}) / \Gal(\Q(\zeta_p)/L_f) = \tilde{H}_{f'} / \tilde{H}_{f} \simeq H_{f'} / H_f.$$
As $H_{f'}$ is cyclic of order $f'$, the quotient group $H_{f'} / H_{f}$ is itself cyclic, of order $f'/f$.
Conclusion:
\begin{center}
$\Gal(L_f/L_{f'})$ is cyclic of order $f'/f$.
\end{center}
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.2.3}
{\it Let $\eta_1,\eta_2,\eta_3$ be as in Example 9.2.2.
\be
\item[(a)] We know that $\zeta_7$ is a root of $x^6+x^5+x^4+x^3+x^2+x+1 = 0$. Dividing by $x^3$ gives
$$x^3+x^2+x+1+x^{-1}+x^{-2}+x^{-3} = 0.$$
Use this to show that $\eta_1,\eta_2,\eta_3$ are roots of $y^3+y^2-2y-1$.
\item[(b)] Prove that $[\Q(\eta_1):\Q] = 3$, and conclude that $\Q(\eta_1)$ is the fixed field of the subgroup $\{e,\tau\} \subset \Gal(\Q(\zeta_7)/\Q)$, where $\tau$ is the complex conjugation.
\item[(c)] Prove (9.10).
\ee}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $\zeta$ be any 7th primitive root of unity (i.e. $\zeta = \zeta_7^i, \ i=1,\cdots,6$).
Then $1+ \zeta+ \zeta^2 + \zeta^3+\zeta^4+\zeta^5+\zeta^6 = 0$, and division by $\zeta^3$ gives
\begin{align}
\zeta^{-3} + \zeta^3 + \zeta^{-2}+ \zeta^2+\zeta+\zeta^{-1}+1 = 0. \label{eq:1}
\end{align}
Write $\eta = \zeta+\zeta^{-1}$. Then
\begin{align*}
\eta^2 & = \zeta^2+ \zeta^{-2}+2,\\
\eta^3 &= \zeta^3+\zeta^{-3} + 3(\zeta+\zeta^{-1}).
\end{align*}
Therefore
\begin{align*}
\zeta^2+ \zeta^{-2} &= \eta^2-2,\\
\zeta^3+\zeta^{-3} &= \eta^3 - 3 \eta.
\end{align*}
By \eqref{eq:1},
$ (\eta^3 - 3 \eta) +(\eta^2-2) + \eta + 1 = 0$, so
\begin{align}
\eta^3 + \eta^2 - 2 \eta - 1 = 0.\label{eq:2}
\end{align}
Applying the equality \eqref{eq:2} to $\zeta_7, \zeta_7^2, \zeta_7^3$, we obtain that $\eta_1= \zeta_7+\zeta_7^{-1}, \eta_2 = \zeta_7^2 + \zeta_7^{-2}, \eta_3 = \zeta_7^3+\zeta_7^{-3}$ are roots of
$$f = x^3+x^2-2x-1.$$
As the minimal polynomial of $\zeta_7$ over $ \Q$ is $\Phi_7$ of degree 6, the list $(1,\zeta_7, \zeta_7^2,\zeta_7^3,\zeta_7^4,\zeta_7^5)$ is linearly independent over $\Q$, thus also the list obtained by multiplication by $\zeta_7$, so $(\zeta_7, \zeta_7^2,\zeta_7^3,\zeta_7^4,\zeta_7^5,\zeta_7^6)$ is a linearly independent list, therefore $\eta_1 = \zeta_7+ \zeta_7^6,\eta_2 = \zeta_7^2+\zeta_7^5,\eta_3 = \zeta_7^3+\zeta_7^4$ are linearly independent, so are a fortiori distinct. Therefore
$$f = x^3+x^2-2x-1 = (x- \eta_1)(x-\eta_2)(x-\eta_3).$$
$\eta_1,\eta_2,\eta_3$ are the three distinct roots of $f$.
\item[(b)]
$f$ has no root in $\Q$. Indeed, if $\alpha = p/q, p\wedge q = 1$ was such a root, we would have the equality
$$p^3 + p^2q -2pq^2 -q^3=0,$$
which implies, since $p\wedge q= 1$, that $p \mid 1, q \mid 1$, so $\alpha = \pm1$, but neither $1$, nor $-1$ is a root of $f$.
Since $f$ has no root in $\Q$ and $\deg(f) = 3$, $f$ is irreducible over $\Q$. So $f$ is the minimal polynomial of $\eta_1$ over $\Q$, and also of $\eta_2,\eta_3$, which are so conjugate of $\eta_1$ over $\Q$. Moreover
$$[\Q(\eta_1):\Q] = \deg(f) = 3.$$
Let $\tau$ be the complex conjugation restricted to $\Q(\zeta_7)$. As $\tau(\zeta_7) = \overline{\zeta}_7 = \zeta_7^{-1} \in \Q(\zeta_7)$, $\tau$ is an automorphism of $\Q(\zeta_7)$ which fixes the elements of $\Q$, so $\tau \in \Gal(\Q(\zeta_7)/\Q)$, and $\tau^2 = e$, therefore $\{e,\tau\} = \tilde{H}_2$ is the unique subgroup of $G = \Gal(\Q(\zeta_7)/\Q)$ of order 2.
Let $L_2 = L_{\langle\tau\rangle}$ be the fixed field of $\tilde{H}_2$.
By the Galois Correspondence (see Proposition 9.2.1 and Exercise 2),
$$[L_2 : \Q] = (G: H_2) =3.$$
As $\eta_1 \in \R, \tau(\eta_1) = \eta_1$, hence $\eta_1 \in L_2$, and so $\Q(\eta_1) \subset L_2$.
Since $[L_2:\Q] = [\Q(\eta_1):\Q] = 3$, then $[L_2 : \Q(\eta_1)] = 1$, hence $L_2 = \Q(\eta_1)$.
\begin{center}
The fixed field $L_2$ of $\tilde{H}_2 = \{e,\tau\}$ is $\Q(\eta_1)$.
\end{center}
\item[(c)] $\eta_1=2 \cos(2\pi/7), \eta_2 = 2\cos(4\pi/7),\eta_3 = 4 \cos(6 \pi/7)$ are the roots of $f = x^3+x^2-2x-1$. We compute these roots with the Cardan's Formula.
The substitution $x=y-1/3$ in $f$ gives
\begin{align*}
g(y) &= f\left(y - \frac{1}{3}\right)\\
& = \left(y - \frac{1}{3}\right)^3+ \left(y - \frac{1}{3}\right)^2-2\left(y - \frac{1}{3}\right)-1\\
&=y^3-y^2+\frac{1}{3}y-\frac{1}{27}+y^2-\frac{2}{3}y+\frac{1}{9} - 2y +\frac{2}{3} - 1\\
&=y^3 - \frac{7}{3} y - \frac{7}{27}
\end{align*}
(Note: if $\Delta$ is the discriminant of $f$ or $g$, then $\Delta = -4p^3-27q^2 = -4\left(-\frac{7}{3}\right)^3 - 27 \left(\frac{7}{27}\right)^2 = \frac{1372}{27} - \frac{49}{27} = \frac{1323}{27} = 49 = 7^2$ is the square of an element of $\Q$, hence the Galois group of $f$ is $A_3\simeq \Z/3\Z$. This shows again that $$\vert \Gal(\Q(\eta_1) / \Q) \vert = [L_2 : \Q] = 3.)$$
Let $\alpha$ a root of $g$ (that is to say $\alpha - 1/3$ is a root of $f$). There exist two complex numbers $u,v$ such that
$\alpha = u+v, uv = 7/9$. Then
\begin{align*}
0 &= (u+v)^3 -\frac{7}{3}(u+v) - \frac{7}{27}\\
&=u^3+v^3+\left(3uv-\frac{7}{3} \right)(u+v) -\frac{7}{27}\\
&=u^3+v^3 -\frac{7}{27}\\
\end{align*}
So $(u,v)$, which satisfies the condition $uv = 7/9$, is a solution of the system
\begin{align*}
u^3+v^3 &= \frac{7}{3^3}\\
u^3v^3&= \frac{7^3}{3^6}
\end{align*}
$u^3,v^3$ are so the roots of the equation $x^2-\frac{7}{3^3}x+ \frac{7^3}{3^6}$, of discriminant $$\delta = \frac{7^2}{3^6} - 4 \frac{7^3}{3^6}= \frac{7^2(-27)}{3^6} =-\frac{7^2}{3^3} = -\frac{49}{27}.$$
\begin{align*}
u^3 &= \frac{1}{2}\left(\frac{7}{27} + i \sqrt{\frac{49}{27}} \right) = \frac{1}{27} \times \frac{7}{2} \left(1 + 3i\sqrt{3} \right)\\
v^3 &= \frac{1}{2}\left(\frac{7}{27} - i \sqrt{\frac{49}{27}} \right)= \frac{1}{27} \times \frac{7}{2} \left(1 - 3i\sqrt{3} \right)\\
\end{align*}
As $u^3 = \overline{v}^3$, and $uv = 7/9 \in \R$, then $v = \omega^k \overline{u},\ k = 0,1,2$, and so $uv = u \overline{u} \omega^k \in \R$, therefore $\omega^k \in \R$ , so $k=0$, which gives $v= \overline{u}$.
The set $\{\eta_1,\eta_2,\eta_3\}$ of the three roots of $f$ is so the set $\{-1/3+ u+\overline{u},-1/3+ \omega u + \omega^2\overline{u},-1/3+ \omega^2 u +\omega \overline{u}\}$.
To identify each root, we must define the determination of $3u = \sqrt[3]{\frac{7}{2} \left(1 + 3i\sqrt{3} \right)}$. Choose for this cubic root the one which lies in the first quadrant (there exists one and only one such a cubic root since $\mathrm{Arg}(1+3i\sqrt{3}) \in [0,\pi/2]$), and write $3 \overline{u} = \sqrt[3]{\frac{7}{2} \left(1 - 3i\sqrt{3} \right)}$ its conjugate.
Then
\begin{align*}
-\frac{1}{3} + u + \overline{u} &= \frac{1}{3}(-1+3u+3\overline{u})\\
&=\frac{1}{3}\left(-1+\sqrt[3]{\frac{7}{2} \left(1 + 3i\sqrt{3} \right)}+\sqrt[3]{\frac{7}{2} \left(1 - 3i\sqrt{3} \right)}\right)\\
\end{align*}
As $\left \vert \frac{7}{2}\left(1+3i\sqrt{3}\right)\right \vert = \frac{7}{2} \sqrt{28} =(\sqrt{7})^3$, then
$\vert 3u\vert = \sqrt{7}$, and $\mathrm{Arg}(3u)\in [0,\pi/6]$, therefore $\re(3u)\geq \sqrt{7}\cos(\pi/6) = \sqrt{7}\sqrt{3}/2$, so $2\re(3u) \geq \sqrt{21}$.
Therefore $\re(-1+3u+3\overline{u}) \geq \sqrt{21} -1 >0$.
As $\eta_1 = 2\cos(2\pi/7)$ is the only positive root of $f$,
$$\eta_1 = \zeta_7+\zeta_7^{-1} =2 \cos(2\pi/7) = \frac{1}{3}\left(-1+\sqrt[3]{\frac{7}{2} \left(1 + 3i\sqrt{3} \right)}+\sqrt[3]{\frac{7}{2} \left(1 - 3i\sqrt{3} \right)}\right)$$
where $\sqrt[3]{\frac{7}{2} \left(1 + 3i\sqrt{3} \right)}$ is chosen such that
$$\re\left(\sqrt[3]{\frac{7}{2} \left(1 + 3i\sqrt{3} \right)}\right)>0, \im\left(\sqrt[3]{\frac{7}{2} \left(1 + 3i\sqrt{3} \right)}\right)>0$$
and $\sqrt[3]{\frac{7}{2} \left(1 - 3i\sqrt{3} \right)}$ is its conjugate.
As $\zeta_7$ is a root of $x^2-\eta_1x +1$, with positive imaginary part, then $\zeta_7 = \frac{1}{2}\left(\eta_1 + i \sqrt{4 - \eta_1^2}\right)$, so
\begin{align*}
\zeta_7 &= -\frac{1}{6} + \frac{1}{6} \sqrt[3]{\frac{7}{2}(1+3i\sqrt{3})} + \frac{1}{6} \sqrt[3]{\frac{7}{2}(1-3i\sqrt{3})}\\
&\phantom{--}+\frac{i}{2} \sqrt{4 - \left ( \frac{1}{3} - \frac{1}{3} \sqrt[3]{\frac{7}{2}(1+3i\sqrt{3})} - \frac{1}{3} \sqrt[3]{\frac{7}{2}(1-3i\sqrt{3})}\right)^2}\\
&= -\frac{1}{6} + \frac{1}{6} \sqrt[3]{\frac{7}{2}(1+3i\sqrt{3})} + \frac{1}{6} \sqrt[3]{\frac{7}{2}(1-3i\sqrt{3})}\\
&\phantom{--}+i \sqrt{1 - \left ( \frac{1}{6} - \frac{1}{6} \sqrt[3]{\frac{7}{2}(1+3i\sqrt{3})} - \frac{1}{6} \sqrt[3]{\frac{7}{2}(1-3i\sqrt{3})}\right)^2}
\end{align*}
with the same cube roots.
(It seems that there is a misprint in (9.11)).
\end{enumerate}
\end{proof}
\paragraph{Ex. 9.2.4}
{\it Let $A\subset B$ be subgroups of a group $G$, and assume that $A$ has index $d$ in $B$. Prove that every left coset of $B$ in $G$ is a disjoint union of $d$ left cosets of $A$ in $G$.
}
\begin{proof}
Let $\{b_1\cdots,b_d\}$ a complete system of representatives of left cosets of $A$ in $B$, where $d=(B:A)$. Then
$$B = \biguplus_{1\leq i \leq d} b_i A.$$
If $cB,\ c\in G$, is any left coset of $B$ in $G$, then
$$cB = \biguplus_{1\leq i \leq d} c b_i A.$$
Indeed,
\be
\item[$\bullet$] $b_i A \subset B$, thus $cb_iA \subset cB$, $i=1,\ldots,d$, therefore $\bigcup_{1\leq i \leq d} c b_i A \subset cB$.
\item[$\bullet$] If $g \in cB$, then $g = ch,\ h\in B$, and $h \in b_i A$ for some $i, \ 1\leq i \leq d$, so $h= b_ia, a\in A$, hence $g = cb_i A \in \bigcup_{1\leq i \leq d} c b_i A$ . Therefore $cB \subset \bigcup_{1\leq i \leq d} c b_i A$.
$$cB = \bigcup_{1\leq i \leq d} c b_i A.$$
\item[$\bullet$] The union is a disjoint union: if $g \in cb_iA$ and $g\in cb_jA$, then $c^{-1}g \in b_iA\cap b_jA$, which is possible only if $i=j$. Thus $i\neq j \Rightarrow cb_iA\cap cb_jA = \emptyset$.
\ee
Conclusion: every left coset of $B$ in $G$ is the disjoint union of $d = (B:A)$ left cosets of $A$ in $G$.
\end{proof}
\paragraph{Ex. 9.2.5}
{\it Complete the proof of Proposition 9.2.8.
}
\begin{proof}
By Exercise 4 , we obtain (9.12):
$$[\lambda]H_{f'} = [\lambda_1]H_f\cup\cdots \cup[\lambda_d]H_f, \qquad \lambda = \lambda_1.$$
We must prove that every period $(f,\lambda_j),\ j=1,\ldots,d,$ is of the form $(f,\lambda_j) = \sigma(\eta) = \sigma((f,\lambda))$, where $\sigma \in \Gal(\Q(\zeta_p)/L_{f'})$.
Write $[i] = [\lambda]^{-1} [\lambda_j]$. As $[\lambda_j]\in [\lambda] H_{f'}$, then $[i] = [\lambda]^{-1} [\lambda_j ]\in H_{f'}$.
Since $[\lambda_j ]= [ i \lambda] $,
$$(f,\lambda_j) = (f,i\lambda), \qquad i\in H_{f'}.$$
Let $\sigma \in \Gal(\Q(\zeta_p)/L_{f'})$ be defined by $\sigma(\zeta_p) = \zeta_p^i$, where $ [i] \in H_{f'}$, so by Lemma 9.2.4(c),
$$(f,\lambda_j) = (f,i\lambda) = \sigma(\eta),\ \sigma \in \Gal(\Q(\zeta_p)/L_{f'}).$$
Every $(f,\lambda_j),\ j=1,\ldots,d,$ is a conjugate of $(f,\lambda)$ over $L_{f'}$.
\end{proof}
\paragraph{Ex. 9.2.6}
{\it Prove that the sum of the distinct $f$-periods equals $-1$.
}
\begin{proof}
With a fixed divisor $f$ of $n$, and $e = n/f$,
$$(\Z/p\Z)^* = \biguplus_{1\leq i \leq e} \lambda_i H_f,$$
where $\lambda_1,\cdots,\lambda_e$ are distinct representatives of the cosets of $H_f$ in $(\Z/p\Z)^*$.
The $e$ distinct $f$-periods are the $(f,\lambda_i),\ i=1,\cdots,e$, thus
$$\sum_{i=1}^e (f,\lambda_i) = \sum_{i=1}^e \sum_{a\in [\lambda_i] H_f} \zeta_p^a = \sum_{a\in \bigcup_{1\leq i \leq e} [\lambda_i] H_f} \zeta_p^a = \sum_{a\in (\Z/p\Z)^*} \zeta_p^a = -1,$$
since $\sum_{a\in (\Z/p\Z)} \zeta_p^a = 0$.
\end{proof}
\paragraph{Ex. 9.2.7}
{\it This exercise is concerned with the details of Examples 9.2.10, 9.2.11, 9.2.12, and 9.2.13.
\be
\item[(a)] Show that $2$ is a primitive root modulo $19$.
\item[(b)] Use the methods of Example 9.2.10 to obtain formulas for $(6,2)^2$ and $(6,4)^2$.
\item[(c)] Show that the formulas of part (b) follow from $(6,1)^2 = 4 -(6,2)$ and part (d) of Lemma 9.2.4.
\item[(d)] Prove (9.15) and use this and Exercise 6 to show that $(6,1)(6,2)(6,4) = 7$.
\item[(e)] Find the minimal polynomial of $(3,2)$ and $(3,4)$ over the field $L_6$ considered in Example 9.2.12.
\item[(f)] Show that (9.18) is the minimal polynomial of $\zeta_{19}$ over the field $L_3$ considered in Example 9.2.13.
\ee
}
\begin{proof}
\begin{enumerate}
\item[(a)]
$2^2=4\not \equiv 1\pmod {19}$, and $2^9=512 = 19\times26+18 \equiv -1\pmod{19}$. Therefore the order of $[2]$ in $(\Z/19\Z)^*$ is 1$8$, so $2$ is a primitive root modulo $19$.
\item[(b)]
In Example 9.2.10, we obtained
\begin{align*}
H_6 &= \{1,7,8,11,12,18\},\\
2H_6&=\{2,3,5,14,16,17\},\\
4H_6 &= \{4,6,9,10,13,15\}.\\
\end{align*}
Verification with Sage:
\begin{verbatim}
a = Mod(8,19)
lc = [sorted([2^j * a^i for i in range(6)]) for j in range(3)]; print(lc)
[[1, 7, 8, 11, 12, 18],
[2, 3, 5, 14, 16, 17],
[4, 6, 9, 10, 13, 15]]
\end{verbatim}
By Proposition 9.2.9, with $(6,19) = (6,0) = 6$,
$$(6,1)^2 = \sum_{\lambda'\in H_6}(6,\lambda'+1),\ (6,2)^2 = \sum_{\lambda'\in 2H_6}(6,\lambda'+2),\ (6,4)^2 = \sum_{\lambda'\in 4H_6}(6,\lambda'+4).$$
\begin{align*}
(6,1)^2 &=(6,2)+(6,8)+(6,9)+(6,12)+(6,13)+6\\
&=2(6,1)+(6,2)+2(6,4)+6\\