-
Notifications
You must be signed in to change notification settings - Fork 6
/
conftest.py
96 lines (85 loc) · 3.07 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from pathlib import Path
import tempfile
from typing import Union, Optional, List, Tuple
import functools
import warnings
import numpy as np
import pytest
import roicat
"""
WARNING: DO NOT REQUIRE ANY DEPENDENCIES FROM ANY NON-STANDARD LIBRARY
MODULES IN THIS FILE. It is intended to be run before any other
modules are imported.
"""
@pytest.fixture(scope='session')
def dir_data_test():
"""
Prepares the directory containing the test data.
Steps:
1. Determine the path to the data directory.
2. Create the data directory if it does not exist.
3. Download the test data if it does not exist.
If the data exists, check its hash.
4. Extract the test data.
5. Return the path to the data directory.
"""
# dir_data_test = str(Path('data_test/').resolve().absolute())
dir_data_test = str((Path(tempfile.gettempdir()) / 'data_test').resolve().absolute())
print(dir_data_test)
# path_data_test_zip = download_data_test_zip(dir_data_test)
## Get data_test from repo folder
path_data_test_zip = str(Path(__file__).parent / 'tests' / 'data_test.zip')
print(f"Extracting test data from {path_data_test_zip}")
roicat.helpers.extract_zip(
path_zip=path_data_test_zip,
path_extract=dir_data_test,
verbose=True,
)
return dir_data_test
# def download_data_test_zip(directory):
# """
# Downloads the test data if it does not exist.
# If the data exists, check its hash.
# """
# path_save = str(Path(directory) / 'data_test.zip')
# roicat.helpers.download_file(
# url=r'https://github.com/RichieHakim/ROICaT/raw/dev/tests/data_test.zip',
# path_save=path_save,
# check_local_first=True,
# check_hash=True,
# hash_type='MD5',
# hash_hex=r'2fcd64902d3c71eb0a85bbdb15a7d68e',
# mkdir=True,
# allow_overwrite=True,
# write_mode='wb',
# verbose=True,
# chunk_size=1024,
# )
# return path_save
@pytest.fixture(scope='session')
def array_hasher():
"""
Returns a function that hashes an array.
"""
from functools import partial
import xxhash
return partial(xxhash.xxh64_hexdigest, seed=0)
@pytest.fixture(scope='session')
def make_ROIs(
n_sessions=10,
max_rois_per_session=100,
size_im=(36,36)
):
import numpy as np
import torch
import torchvision
roi_prototype = torch.zeros(size_im, dtype=torch.uint8)
grid = torch.meshgrid(torch.arange(size_im[0]//2-8, size_im[0]//2+8), torch.arange(size_im[1]//2-8, size_im[1]//2+8), indexing='xy')
roi_prototype[grid[0], grid[1]] = 255
transforms = torch.nn.Sequential(*[
torchvision.transforms.RandomPerspective(distortion_scale=0.9, p=1.0),
torchvision.transforms.RandomAffine(0, scale=(2.0, 2.0))
])
ROIs = [[transforms(torch.as_tensor(roi_prototype[None,:,:]))[0].numpy() for i_roi in range(max_rois_per_session)] for i_sesh in range(n_sessions)]
ROIs = [np.stack([roi for roi in ROIs_sesh if roi.sum() > 0], axis=0) for ROIs_sesh in ROIs]
return ROIs