forked from mzbac/mlx-moe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
phi2moe.py
270 lines (217 loc) · 8.82 KB
/
phi2moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import inspect
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
import numpy as np
@dataclass
class ModelArgs:
vocab_size: int = 51200
max_position_embeddings: int = 2048
hidden_size: int = 2560
intermediate_size: int = 10240
num_hidden_layers: int = 32
num_attention_heads: int = 32
num_key_value_heads: int = 32
num_experts_per_tok: int = 2
num_local_experts: int = 4
rms_norm_eps: float = 1e-5
vocab_size: int
layer_norm_eps: float = 1e-5
rope_theta: float = 10000.0
partial_rotary_factor: float = 0.4
rope_traditional: bool = False
model_type: str = None
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
class PhiMoeAttention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.repeats = self.num_heads // self.num_key_value_heads
self.rope_theta = config.rope_theta
self.partial_rotary_factor = config.partial_rotary_factor
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=True
)
self.k_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
)
self.v_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
)
self.dense = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=True
)
self.rope = nn.RoPE(
int(self.partial_rotary_factor * self.head_dim),
traditional=False,
base=self.rope_theta,
)
def __call__(self, x, mask=None, cache=None):
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Extract some shapes
B, L, D = queries.shape
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.num_heads, self.head_dim).transpose(
0, 2, 1, 3
)
keys = keys.reshape(B, L, self.num_key_value_heads, self.head_dim).transpose(
0, 2, 1, 3
)
values = values.reshape(
B, L, self.num_key_value_heads, self.head_dim
).transpose(0, 2, 1, 3)
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
return a.reshape([B, self.num_heads, L, -1])
if self.repeats > 1:
keys, values = map(repeat, (keys, values))
# Add RoPE to the queries and keys and combine them with the cache
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
queries = queries.astype(mx.float32)
keys = keys.astype(mx.float32)
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.dense(values_hat), (keys, values)
class PhiMoeBLockSparseTop2MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.fc1 = nn.Linear(args.hidden_size, args.intermediate_size)
self.fc2 = nn.Linear(args.intermediate_size, args.hidden_size)
self.act = nn.GELU(approx="precise")
def __call__(self, x: mx.array) -> mx.array:
return self.fc2(self.act(self.fc1(x)))
class PhiMoeSparseMoeBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_dim = args.hidden_size
self.ffn_dim = args.intermediate_size
self.num_experts = args.num_local_experts
self.num_experts_per_tok = args.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self._noise_linear = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = [
PhiMoeBLockSparseTop2MLP(args=args) for _ in range(self.num_experts)
]
def __call__(self, x: mx.array) -> mx.array:
ne = self.num_experts_per_tok
orig_shape = x.shape
x = x.reshape(-1, x.shape[-1])
gates = self.gate(x)
if self.training:
def softplus(x):
return mx.log(1 + mx.exp(x))
noise_logits = self._noise_linear(x)
noise = mx.random.normal(
shape=noise_logits.shape, dtype=noise_logits.dtype
) * softplus(noise_logits)
gates = gates + noise
inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne, axis=-1))[:, :ne]
scores = mx.softmax(
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
axis=-1,
).astype(gates.dtype)
if self.training:
y = mx.zeros((x.shape[0], ne, x.shape[-1]))
for e, expert in enumerate(self.experts):
idx1, idx2 = map(mx.array, np.where(inds == e))
if idx1.size == 0:
continue
y[idx1, idx2] = expert(x[idx1])
y = (y * scores[:, :, None]).sum(axis=1)
else:
y = []
for xt, st, it in zip(x, scores, inds.tolist()):
yt = mx.concatenate([self.experts[e](xt)[:, None] for e in it], axis=-1)
yt = (yt * st).sum(axis=-1)
y.append(yt[None, :])
y = mx.concatenate(y)
return y.reshape(orig_shape)
class PhiMoeDecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.self_attn = PhiMoeAttention(args)
self.block_sparse_moe = PhiMoeSparseMoeBlock(args)
self.input_layernorm = LayerNorm(args.hidden_size, eps=args.layer_norm_eps)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
h = self.input_layernorm(x)
attn_h, cache = self.self_attn(h, mask, cache)
ff_h = self.block_sparse_moe(h)
return attn_h + ff_h + x, cache
class PhiMoeModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
PhiMoeDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
]
self.final_layernorm = LayerNorm(args.hidden_size, eps=args.layer_norm_eps)
def __call__(self, x, mask, cache):
x = self.embed_tokens(x)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
x, cache[e] = layer(x, mask, cache[e])
return self.final_layernorm(x), cache
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model = PhiMoeModel(args)
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=True)
def __call__(
self,
x: mx.array,
mask: mx.array = None,
cache: mx.array = None,
):
mask = None
if x.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(x.dtype)
y, cache = self.model(x, mask, cache)
return self.lm_head(y), cache