forked from Australes/Machine-Learning-For-Trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
24_mask.py
46 lines (30 loc) · 875 Bytes
/
24_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
''' Look up: https://docs.scipy.org/doc/numpy/reference/routines.random.html '''
def generate_array():
#x = np.random.rand(4, 5)
x = np.array([(20, 25, 10, 23, 26, 32, 10, 5, 0),
(0, 2, 50, 20, 0, 1, 28, 5, 0)])
print('Given array: ')
print(x)
return x
def access_elements(array):
indexes = np.array([1, 1, 2, 3])
elements = array[indexes]
print('Requested elements:')
print(elements)
return elements
def masking(array, mask_value):
masked = array[array < mask_value]
print('Masked')
print(masked)
def replacing(array, mask_value, new_value):
array[array < mask_value] = new_value
print('Replaced:')
print(array)
if __name__ == "__main__":
x = generate_array()
mean_value = x.mean()
print("Mean:")
print(mean_value)
masking(x, mean_value)
replacing(x, mean_value, 0)