forked from Australes/Machine-Learning-For-Trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
27_bollinger_bands.py
84 lines (62 loc) · 2.22 KB
/
27_bollinger_bands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import pandas as pd
import matplotlib.pyplot as plt
''' Read: http://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-stats '''
def symbol_to_path(symbol, base_dir = 'data'):
return os.path.join(base_dir, "{}.csv".format(str(symbol)))
def dates_creator():
start_date = '2013-01-01'
end_date = '2013-12-31'
dates = pd.date_range(start_date, end_date)
return dates
def get_data(symbols, dates):
df = pd.DataFrame(index = dates)
if 'SPY' not in symbols: # adding SPY as the main reference
symbols.insert(0, 'SPY')
for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol),
index_col = 'Date',
parse_dates = True,
usecols = ['Date', 'Adj Close'],
na_values = ['nan'])
df_temp = df_temp.rename(columns = {'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY':
df = df.dropna(subset = ['SPY'])
print(df)
return df
def plot(df, symbols):
ax = df.plot(title = 'Stock prices', fontsize = 12)
ax.set_xlabel('Date')
ax.set_ylabel('Price')
plt.show()
def get_rolling_mean(df, window):
return df.rolling(window = window, center = False).mean()
def get_rolling_std(df, window):
return df.rolling(window = window, center = False).std()
def bollinger_bands(df, window):
rolling_mean = get_rolling_mean(df, window)
rolling_std = get_rolling_std(df, window)
upper_band = rolling_mean + 2 * rolling_std
lower_band = rolling_mean - 2 * rolling_std
return upper_band, lower_band
def print_pred_statistics(df, window):
# Plotting SPY
ax = df['SPY'].plot(title = 'SPY vs SPY Rolling Mean', label = 'SPY')
# Updated API for rolling mean!
rm_SPY = get_rolling_mean(df['SPY'], window)
# Plotting Rolling Mean of SPY
rm_SPY.plot(label = 'Rolling Mean', ax = ax )
# Calculating Bollinger Bands (R)
upper_bollinger, lower_bollinger = bollinger_bands(df['SPY'], window = window)
upper_bollinger.plot(label = 'Upper band', ax = ax)
lower_bollinger.plot(label = 'Lower band', ax = ax)
# Adding the legend
ax.legend(loc = 'upper left')
# Show!
plt.show()
symbols = ['SPY']
if __name__ == "__main__":
dates = dates_creator()
df = get_data(symbols, dates)
print_pred_statistics(df, window = 20)