forked from Australes/Machine-Learning-For-Trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
29_cumulative_returns.py
68 lines (52 loc) · 1.66 KB
/
29_cumulative_returns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import pandas as pd
import matplotlib.pyplot as plt
''' Read: http://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-stats '''
def symbol_to_path(symbol, base_dir = 'data'):
return os.path.join(base_dir, "{}.csv".format(str(symbol)))
def dates_creator():
start_date = '2013-01-01'
end_date = '2013-12-31'
dates = pd.date_range(start_date, end_date)
return dates
def get_data(symbols, dates):
df = pd.DataFrame(index = dates)
if 'SPY' not in symbols: # adding SPY as the main reference
symbols.insert(0, 'SPY')
for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol),
index_col = 'Date',
parse_dates = True,
usecols = ['Date', 'Adj Close'],
na_values = ['nan'])
df_temp = df_temp.rename(columns = {'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY':
df = df.dropna(subset = ['SPY'])
print(df)
return df
def plot(df, title):
ax = df.plot(title = title, fontsize = 12)
ax.set_xlabel('Date')
ax.set_ylabel('Price')
plt.show()
def get_daily_returns(df):
daily_returns = df.copy()
# Calculating daily returns
daily_returns[1:] = (df / df.shift(1)) - 1
# Setting daily returns for row 0 to 0.
daily_returns.ix[0, :] = 0
return daily_returns
def cumulative_return(df):
cumul_return = df.copy()
cumul_return = (df / df.ix[0]) - 1
return cumul_return
symbols = ['SPY', 'IBM']
if __name__ == "__main__":
dates = dates_creator()
df = get_data(symbols, dates)
daily_returns = get_daily_returns(df)
cumul = cumulative_return(df)
plot(df,'Stock prices')
plot(daily_returns, 'Daily returns')
plot(cumul, 'Cumulative returns')