forked from Australes/Machine-Learning-For-Trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
34_correlation.py
91 lines (64 loc) · 2.37 KB
/
34_correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
''' Read: http://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-stats '''
def symbol_to_path(symbol, base_dir = 'data'):
return os.path.join(base_dir, "{}.csv".format(str(symbol)))
def dates_creator():
start_date = '2009-01-01'
end_date = '2015-12-31'
dates = pd.date_range(start_date, end_date)
return dates
def get_data(symbols, dates):
df = pd.DataFrame(index = dates)
if 'SPY' not in symbols: # adding SPY as the main reference
symbols.insert(0, 'SPY')
for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol),
index_col = 'Date',
parse_dates = True,
usecols = ['Date', 'Adj Close'],
na_values = ['nan'])
df_temp = df_temp.rename(columns = {'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY':
df = df.dropna(subset = ['SPY'])
print(df)
return df
def plot(df):
ax = df.plot(title = 'Stock prices', fontsize = 12)
ax.set_xlabel('Date')
ax.set_ylabel('Price')
plt.show()
def get_daily_returns(df):
daily_returns = df.copy()
# Calculating daily returns
daily_returns[1:] = (df / df.shift(1)) - 1
# Setting daily returns for row 0 to 0.
daily_returns.ix[0, :] = 0
return daily_returns
def show_scatter(df, x, y):
df.plot(kind = 'scatter', x= x, y= y)
beta, alpha = calculate_alpha_beta(df, x, y)
# Line -> beta * x + alpha for all values of x
plt.plot(df[x], beta * df[x] + alpha, '-', color = 'r')
plt.show()
print('Beta for', y + ':')
print(beta)
print('Alpha for', y + ':')
print(alpha)
def calculate_alpha_beta(df, x, y):
beta, alpha = np.polyfit(df[x], df[y] , 1) # First order polynomial = 1
return beta, alpha
def calculate_correlation(df):
'''Calculating correlation using the most common method - > pearson.'''
print(df.corr(method = 'pearson'))
symbols = ['SPY', 'IBM', 'AAPL']
if __name__ == "__main__":
dates = dates_creator()
df = get_data(symbols, dates)
daily_returns = get_daily_returns(df)
plot(df)
plot(daily_returns)
calculate_correlation(daily_returns)