forked from Australes/Machine-Learning-For-Trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
35_daily_portfolio_value.py
61 lines (48 loc) · 1.84 KB
/
35_daily_portfolio_value.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
''' Read: http://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-stats '''
def symbol_to_path(symbol, base_dir = 'data'):
return os.path.join(base_dir, "{}.csv".format(str(symbol)))
def dates_creator(start_date, end_date):
dates = pd.date_range(start_date, end_date)
return dates
def get_data(symbols, dates):
df = pd.DataFrame(index = dates)
if 'SPY' not in symbols: # adding SPY as the main reference
symbols.insert(0, 'SPY')
for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol),
index_col = 'Date',
parse_dates = True,
usecols = ['Date', 'Adj Close'],
na_values = ['nan'])
df_temp = df_temp.rename(columns = {'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY':
df = df.dropna(subset = ['SPY'])
return df
def normalize_data(df):
return df / df.iloc[0,:]
def plot(df, title):
ax = df.plot(title = title, fontsize = 12)
ax.set_xlabel('Date')
ax.set_ylabel(title)
plt.show()
def calculate_portfolio_value(normalized_df, init_investment, symbols, allocation_fraction):
stock_investment = init_investment * allocation_fraction
stock_values = normalized_df[symbols] * stock_investment
portfolio_value = stock_values.sum(axis = 1)
plot(portfolio_value, 'Portfolio value')
if __name__ == "__main__":
start = '2013-05-01'
end = '2013-12-31'
symbols = ['SPY', 'AAPL', 'GOOG', 'IBM']
dates = dates_creator(start, end)
df = get_data(symbols, dates)
# Daily portfolio
normalized = normalize_data(df)
allocation_fraction = np.array([0.5, 0.0, 0.0, 0.5])
start_investment = 1e6 # in USD
calculate_portfolio_value(normalized, start_investment, symbols, allocation_fraction)