-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_lib_test.py
400 lines (350 loc) · 16.3 KB
/
model_lib_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object detection model library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import numpy as np
import tensorflow as tf
from tensorflow.contrib.tpu.python.tpu import tpu_config
from tensorflow.contrib.tpu.python.tpu import tpu_estimator
from object_detection import inputs
from object_detection import model_hparams
from object_detection import model_lib
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
# Model for test. Options are:
# 'ssd_inception_v2_pets', 'faster_rcnn_resnet50_pets'
MODEL_NAME_FOR_TEST = 'ssd_inception_v2_pets'
def _get_data_path():
"""Returns an absolute path to TFRecord file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
'pets_examples.record')
def get_pipeline_config_path(model_name):
"""Returns path to the local pipeline config file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'samples',
'configs', model_name + '.config')
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
'pet_label_map.pbtxt')
def _get_configs_for_model(model_name):
"""Returns configurations for model."""
filename = get_pipeline_config_path(model_name)
data_path = _get_data_path()
label_map_path = _get_labelmap_path()
configs = config_util.get_configs_from_pipeline_file(filename)
configs = config_util.merge_external_params_with_configs(
configs,
train_input_path=data_path,
eval_input_path=data_path,
label_map_path=label_map_path)
return configs
class ModelLibTest(tf.test.TestCase):
@classmethod
def setUpClass(cls):
tf.reset_default_graph()
def _assert_model_fn_for_train_eval(self, configs, mode,
class_agnostic=False):
model_config = configs['model']
train_config = configs['train_config']
with tf.Graph().as_default():
if mode == 'train':
features, labels = inputs.create_train_input_fn(
configs['train_config'],
configs['train_input_config'],
configs['model'])()
model_mode = tf.estimator.ModeKeys.TRAIN
batch_size = train_config.batch_size
elif mode == 'eval':
features, labels = inputs.create_eval_input_fn(
configs['eval_config'],
configs['eval_input_config'],
configs['model'])()
model_mode = tf.estimator.ModeKeys.EVAL
batch_size = 1
elif mode == 'eval_on_train':
features, labels = inputs.create_eval_input_fn(
configs['eval_config'],
configs['train_input_config'],
configs['model'])()
model_mode = tf.estimator.ModeKeys.EVAL
batch_size = 1
detection_model_fn = functools.partial(
model_builder.build, model_config=model_config, is_training=True)
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
model_fn = model_lib.create_model_fn(detection_model_fn, configs, hparams)
estimator_spec = model_fn(features, labels, model_mode)
self.assertIsNotNone(estimator_spec.loss)
self.assertIsNotNone(estimator_spec.predictions)
if class_agnostic:
self.assertNotIn('detection_classes', estimator_spec.predictions)
else:
detection_classes = estimator_spec.predictions['detection_classes']
self.assertEqual(batch_size, detection_classes.shape.as_list()[0])
self.assertEqual(tf.float32, detection_classes.dtype)
detection_boxes = estimator_spec.predictions['detection_boxes']
detection_scores = estimator_spec.predictions['detection_scores']
num_detections = estimator_spec.predictions['num_detections']
self.assertEqual(batch_size, detection_boxes.shape.as_list()[0])
self.assertEqual(tf.float32, detection_boxes.dtype)
self.assertEqual(batch_size, detection_scores.shape.as_list()[0])
self.assertEqual(tf.float32, detection_scores.dtype)
self.assertEqual(tf.float32, num_detections.dtype)
if model_mode == tf.estimator.ModeKeys.TRAIN:
self.assertIsNotNone(estimator_spec.train_op)
return estimator_spec
def _assert_model_fn_for_predict(self, configs):
model_config = configs['model']
with tf.Graph().as_default():
features, _ = inputs.create_eval_input_fn(
configs['eval_config'],
configs['eval_input_config'],
configs['model'])()
detection_model_fn = functools.partial(
model_builder.build, model_config=model_config, is_training=False)
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
model_fn = model_lib.create_model_fn(detection_model_fn, configs, hparams)
estimator_spec = model_fn(features, None, tf.estimator.ModeKeys.PREDICT)
self.assertIsNone(estimator_spec.loss)
self.assertIsNone(estimator_spec.train_op)
self.assertIsNotNone(estimator_spec.predictions)
self.assertIsNotNone(estimator_spec.export_outputs)
self.assertIn(tf.saved_model.signature_constants.PREDICT_METHOD_NAME,
estimator_spec.export_outputs)
def test_model_fn_in_train_mode(self):
"""Tests the model function in TRAIN mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_train_eval(configs, 'train')
def test_model_fn_in_eval_mode(self):
"""Tests the model function in EVAL mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_train_eval(configs, 'eval')
def test_model_fn_in_eval_on_train_mode(self):
"""Tests the model function in EVAL mode with train data."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_train_eval(configs, 'eval_on_train')
def test_model_fn_in_predict_mode(self):
"""Tests the model function in PREDICT mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_predict(configs)
def test_create_estimator_and_inputs(self):
"""Tests that Estimator and input function are constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
eval_steps = 10
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
eval_steps=eval_steps)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(20, train_steps)
self.assertEqual(10, eval_steps)
self.assertIn('train_input_fn', train_and_eval_dict)
self.assertIn('eval_input_fn', train_and_eval_dict)
self.assertIn('eval_on_train_input_fn', train_and_eval_dict)
def test_create_estimator_with_default_train_eval_steps(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
config_train_steps = configs['train_config'].num_steps
config_eval_steps = configs['eval_config'].num_examples
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config, hparams, pipeline_config_path)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(config_train_steps, train_steps)
self.assertEqual(config_eval_steps, eval_steps)
def test_create_tpu_estimator_and_inputs(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tpu_config.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
eval_steps = 10
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
eval_steps=eval_steps,
use_tpu_estimator=True)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
self.assertEqual(20, train_steps)
self.assertEqual(10, eval_steps)
def test_create_train_and_eval_specs(self):
"""Tests that `TrainSpec` and `EvalSpec` is created correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
eval_steps = 10
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
eval_steps=eval_steps)
train_input_fn = train_and_eval_dict['train_input_fn']
eval_input_fn = train_and_eval_dict['eval_input_fn']
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
predict_input_fn = train_and_eval_dict['predict_input_fn']
train_steps = train_and_eval_dict['train_steps']
eval_steps = train_and_eval_dict['eval_steps']
train_spec, eval_specs = model_lib.create_train_and_eval_specs(
train_input_fn,
eval_input_fn,
eval_on_train_input_fn,
predict_input_fn,
train_steps,
eval_steps,
eval_on_train_data=True,
final_exporter_name='exporter',
eval_spec_name='holdout')
self.assertEqual(train_steps, train_spec.max_steps)
self.assertEqual(2, len(eval_specs))
self.assertEqual(eval_steps, eval_specs[0].steps)
self.assertEqual('holdout', eval_specs[0].name)
self.assertEqual('exporter', eval_specs[0].exporters[0].name)
self.assertEqual(eval_steps, eval_specs[1].steps)
self.assertEqual('eval_on_train', eval_specs[1].name)
def test_experiment(self):
"""Tests that the `Experiment` object is constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
experiment = model_lib.populate_experiment(
run_config,
hparams,
pipeline_config_path,
train_steps=10,
eval_steps=20)
self.assertEqual(10, experiment.train_steps)
self.assertEqual(20, experiment.eval_steps)
class UnbatchTensorsTest(tf.test.TestCase):
def test_unbatch_without_unpadding(self):
image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, None, None])
groundtruth_classes_placeholder = tf.placeholder(tf.float32,
[2, None, None])
groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, None])
tensor_dict = {
fields.InputDataFields.image:
image_placeholder,
fields.InputDataFields.groundtruth_boxes:
groundtruth_boxes_placeholder,
fields.InputDataFields.groundtruth_classes:
groundtruth_classes_placeholder,
fields.InputDataFields.groundtruth_weights:
groundtruth_weights_placeholder
}
unbatched_tensor_dict = model_lib.unstack_batch(
tensor_dict, unpad_groundtruth_tensors=False)
with self.test_session() as sess:
unbatched_tensor_dict_out = sess.run(
unbatched_tensor_dict,
feed_dict={
image_placeholder:
np.random.rand(2, 4, 4, 3).astype(np.float32),
groundtruth_boxes_placeholder:
np.random.rand(2, 5, 4).astype(np.float32),
groundtruth_classes_placeholder:
np.random.rand(2, 5, 6).astype(np.float32),
groundtruth_weights_placeholder:
np.random.rand(2, 5).astype(np.float32)
})
for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
self.assertAllEqual(image_out.shape, [4, 4, 3])
for groundtruth_boxes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_boxes]:
self.assertAllEqual(groundtruth_boxes_out.shape, [5, 4])
for groundtruth_classes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_classes]:
self.assertAllEqual(groundtruth_classes_out.shape, [5, 6])
for groundtruth_weights_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_weights]:
self.assertAllEqual(groundtruth_weights_out.shape, [5])
def test_unbatch_and_unpad_groundtruth_tensors(self):
image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
groundtruth_classes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, 5])
num_groundtruth_placeholder = tf.placeholder(tf.int32, [2])
tensor_dict = {
fields.InputDataFields.image:
image_placeholder,
fields.InputDataFields.groundtruth_boxes:
groundtruth_boxes_placeholder,
fields.InputDataFields.groundtruth_classes:
groundtruth_classes_placeholder,
fields.InputDataFields.groundtruth_weights:
groundtruth_weights_placeholder,
fields.InputDataFields.num_groundtruth_boxes:
num_groundtruth_placeholder
}
unbatched_tensor_dict = model_lib.unstack_batch(
tensor_dict, unpad_groundtruth_tensors=True)
with self.test_session() as sess:
unbatched_tensor_dict_out = sess.run(
unbatched_tensor_dict,
feed_dict={
image_placeholder:
np.random.rand(2, 4, 4, 3).astype(np.float32),
groundtruth_boxes_placeholder:
np.random.rand(2, 5, 4).astype(np.float32),
groundtruth_classes_placeholder:
np.random.rand(2, 5, 6).astype(np.float32),
groundtruth_weights_placeholder:
np.random.rand(2, 5).astype(np.float32),
num_groundtruth_placeholder:
np.array([3, 3], np.int32)
})
for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
self.assertAllEqual(image_out.shape, [4, 4, 3])
for groundtruth_boxes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_boxes]:
self.assertAllEqual(groundtruth_boxes_out.shape, [3, 4])
for groundtruth_classes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_classes]:
self.assertAllEqual(groundtruth_classes_out.shape, [3, 6])
for groundtruth_weights_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_weights]:
self.assertAllEqual(groundtruth_weights_out.shape, [3])
if __name__ == '__main__':
tf.test.main()