forked from matiyau/RuDe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcubeCns.py
executable file
·226 lines (184 loc) · 6.68 KB
/
cubeCns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from math import sqrt
import pickle
from time import sleep
import cv2
import cubeRot
import serial
#from SimpleCV import Image, Camera
def matrixForm(Arduino) :
cube_sides = ['Front', 'Left', 'Back', 'Right', 'Up', 'Down']
side='temp'
opp=[-1 for x in range (0,6)]
mat=[[[[-1 for plane in range(0,3)] for z in range (0,2)] for y in range (0,2)] for x in range (0,2)]
cor=[[[-1 for z in range (0,2)] for y in range (0,2)] for x in range (0,2)]
sort=[[[[[0 for hs in range (0,3)] for plane in range(0,3)] for z in range (0,2)] for y in range (0,2)] for x in range (0,2)]
def send_Ard(k):
Arduino.reset_input_buffer()
Arduino.write("*<"+str(k)+"#")
if Arduino.read(1)=='N':
return 1
return 0
# Capture and process the images of each side side to extract the Hue-Saturation values
def capt_proc (side) :
camera = cv2.VideoCapture(1)
sleep(0.5)
camera.set(3,480) #Height
camera.set(4,640) #Width
#Discard The First Few Frames
for i in range(0,10) :
retval,image = camera.read()
del(camera)
image = cv2.rotate(image,cv2.ROTATE_90_COUNTERCLOCKWISE)
image = image[100:500,40:440]
cv2.imwrite(side + '_raw.jpg',image)
#image = cv2.imread(side + '_raw.jpg')
b_ave=[float(0), float(0), float(0), float(0)]
g_ave=[float(0), float(0), float(0), float(0)]
r_ave=[float(0), float(0), float(0), float(0)]
for x in range(0,100) :
for y in range(0,100) :
b_ave[1]= b_ave[1] + (float(image[x, y, 0])/10000)
g_ave[1]= g_ave[1] + (float(image[x, y, 1])/10000)
r_ave[1]= r_ave[1] + (float(image[x, y, 2])/10000)
for x in range(300,400) :
for y in range(0,100) :
b_ave[0]= b_ave[0] + (float(image[x, y, 0])/10000)
g_ave[0]= g_ave[0] + (float(image[x, y, 1])/10000)
r_ave[0]= r_ave[0] + (float(image[x, y, 2])/10000)
for x in range(0,100) :
for y in range(300,400) :
b_ave[3]= b_ave[3] + (float(image[x, y, 0])/10000)
g_ave[3]= g_ave[3] + (float(image[x, y, 1])/10000)
r_ave[3]= r_ave[3] + (float(image[x, y, 2])/10000)
for x in range(300,400) :
for y in range(300,400) :
b_ave[2]= b_ave[2] + (float(image[x, y, 0])/10000)
g_ave[2]= g_ave[2] + (float(image[x, y, 1])/10000)
r_ave[2]= r_ave[2] + (float(image[x, y, 2])/10000)
for i in range(0,4):
sort[i/2][i%2][1][0] = [b_ave[i], g_ave[i], r_ave[i]]
# Universal positioning for HUE-SATURATION value matrix
def s(i):
return sort[(i/12)%2][(i/6)%2][(i/3)%2][i%3]
# Universal positioning for multidimensional colour-code matrix
def m(i):
return mat[(i/12)%2][(i/6)%2][(i/3)%2][i%3]
def asgn(i,j):
mat[(i/12)%2][(i/6)%2][(i/3)%2][i%3]=j
# Find distance between two polar coordinates
# r1, r2 are distances from origin : These are the SATURATION values
# a1, a2 are angles made with positive X-axis : These are the HUE angles
def dist(p1,p2):
d=sqrt(float(p1[0]-p2[0])**2 + float(p1[1]-p2[1])**2 + float(p1[2]-p2[2])**2)
return d
# Group the colour at position 'i' with its 3 nearest neighbours
# Assign the colour code 'j' to all colours in this group
def group(i,j):
asgn(i,j)
for x in range (0,3):
count=0
for y in range (i+1,24):
if m(y)!=(-1):
continue
temp=dist(s(i), s(y))
if count==0 :
dis=temp
pos=y
elif dis>temp :
dis=temp
pos=y
count=count+1
asgn(pos,j)
def pair():
for col1 in range (0,3):
for col2 in range (3,6):
x=0
while x<2 :
y=0
while y<2:
z=0
while z<2 :
if col1 in mat[x][y][z] and col2 in mat[x][y][z]:
break
z=z+1
if z<2 :
break
y=y+1
if y<2:
break
x=x+1
if x<2:
continue
opp[col1]=col2
opp[col2]=col1
break
# Rotate the cube to bring each side in front of the Camera.
for side in cube_sides :
print side
#Correctly Position The Cube
#For Up, Cube is already positioned with side grippers
if side != 'Up' :
if send_Ard(18)==0:
return
capt_proc(side)
if side != 'Up' and side != 'Down':
cubeRot.full('up', 1, mat)
cubeRot.full('up', 1, sort)
if send_Ard(5)==0:
return
elif side == 'Up' :
cubeRot.full('up', -1, mat)
cubeRot.full('up', -1, mat)
cubeRot.full('up', -1, sort)
cubeRot.full('up', -1, sort)
if send_Ard(4)==0:
return
else:
cubeRot.full('up', -1, mat)
cubeRot.full('up', -1, mat)
cubeRot.full('up', -1, sort)
cubeRot.full('up', -1, sort)
if send_Ard(4)==0:
return
cubeRot.full('left', 1, mat)
cubeRot.full('left', 1, sort)
if send_Ard(0)==0:
return
if side == 'Right':
cubeRot.full('left', -1, mat)
cubeRot.full('left', -1, sort)
if send_Ard(2)==0:
return
#print "Next\n"
if send_Ard(18)==0:
return
#print sort
# Group 5 colours of the cube
for i in range (0,5) :
for j in range (0,24):
if m(j)!=(-1):
continue
group(j,i)
break
# Assign the last colour to the remaining 4 positions
for i in range (0,24):
if m(i)==(-1):
asgn(i, 5)
for i in range (0,24):
#print m(i)
if i%3==2:
#print "\n"
next
pair()
for i in range (0,24):
if m(i)==opp[0] :
asgn(i, 5)
elif m(i)==opp[1] :
asgn(i, 4)
elif m(i)==opp[2] :
asgn(i, 3)
pair()
#print mat
with open('Matrix', 'wb') as comb:
pickle.dump(mat, comb)
#matrixForm(3)