-
Notifications
You must be signed in to change notification settings - Fork 0
/
log.txt
142 lines (141 loc) · 7.1 KB
/
log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
\subsection{Regularity condition}
\label{subsubsec:regularity}
We first establish that $\frac{\partial}{\partial \delta}\expectation
\tilde{K}(\delta) = \expectation \frac{\partial}{\partial
\delta}\tilde{K}(\delta)$. Since $\tilde{K}$ is a finite dimensional
matrix-valued function, we verify the integrability coefficient-wise, following
\citet{sutherland2015}'s demonstration. Namely, without loss of generality we
show
\begin{dmath*}
\left[\frac{\partial}{\partial \delta}\expectation
\tilde{K}(\delta)\right]_{\ell m} = \expectation \frac{\partial}{\partial
\delta} \left[\tilde{K}(\delta)\right]_{\ell m}
\end{dmath*}
\begin{proposition}[Differentiation under the integral sign]
\label{pr:diff_under_int}
Let $\mathcal{X}$ be an open subset of $\mathbb{R}^d$ and $\Omega$ be a
measured space. Suppose that the function
$f:\mathcal{X}\times\Omega\to\mathbb{R}$ verifies the following conditions
\begin{itemize}
\item $f(x,\omega)$ is a measurable function of $\omega$ for each $x$
in $\mathcal{X}$.
\item For almost all $\omega$ in $\Omega$, the derivative $\partial
f(x, \omega)/\partial x_i$ exists for all $x$ in $\mathcal{X}$.
\item There is an integrable function $\Theta:\Omega\to\mathbb{R}$ such
that $\abs{\partial f(x, \omega)/\partial x_i}\le\Theta(\omega)$ for
all $x$ in $\mathcal{X}$.
\end{itemize}
Then
\begin{dmath*}
\frac{\partial}{\partial x_i} \int_\Omega f(x,\omega)d\omega =
\int_\Omega \frac{\partial}{\partial x_i}f(x,\omega)d\omega.
\end{dmath*}
\end{proposition}
\begin{proof}
Define the function
$\tilde{G}_{x,z }^{i,\ell,m}(t,\omega):\mathbb{R}\times\Omega\to\mathbb{R}$
by
\begin{dmath*}
\tilde{G}_{x, z}^{i,\ell,m}(t,\omega) = \left[\tilde{K}(x + te_i -
y)\right]_{\ell m} \hiderel{=}
\left[\tilde{G}_{x,y}^{i}(t,\omega)\right]_{\ell m},
\end{dmath*}
where $e_i$ is the $i$-th standard basis vector. Then
$\tilde{G}_{x, z}^{i,\ell,m}$ is integrable \acs{wrt}. $\omega$ since
\begin{dmath*}
\int_\Omega \tilde{G}_{x, z}^{i,\ell,m}(t,\omega) d\omega =
\expectation \left[\tilde{K}(x+te_i - z)\right]_{\ell m} = \left[K(x +
t e_i - z)\right]_{\ell m} < \infty.
\end{dmath*}
Additionally for any $\omega$ in $\Omega$, $\partial/\partial t
\tilde{G}_{x,y}^{i,\ell,m}(t,\omega)$ exists and satisfies
\begin{dmath*}
\expectation \abs{\frac{\partial}{\partial
t}\tilde{G}_{x,y}^{i,\ell,m}(t,\omega)}
= \expectation \abs{\frac{1}{D}\sum_{j=1}^DA(\omega_j)_{\ell m}
\left(\sin\inner{y ,\omega_j}\frac{\partial}{\partial
t}\sin(\inner{x,\omega_j} +
t\omega_{ij})+\cos\inner{y,\omega_j}\frac{\partial}{\partial
t}\cos(\inner{x,\omega_j} + t\omega_{ij})\right)}
= \expectation \abs{\frac{1}{D}\sum_{j=1}^D A(\omega_j)_{\ell m}
\left(\omega_{ji}\sin\inner{y, \omega_j}\sin(\inner{x, \omega_j} +
t\omega_{ji})-\omega_{ji}\cos\inner{y, \omega_j}\cos(\inner{x
,\omega_j}+t\omega_{ji})\right)} \le\expectation\left[ \frac{1}{D}
\sum_{j=1}^D\abs{A(\omega_j)_{\ell m}\omega_{ji}\sin\inner{y,
\omega_j}\sin(\inner{x, \omega_j} + t\omega_{ji})} +
\abs{A(\omega_j)_{\ell m}\omega_{ji}\cos\inner{y, \omega_j}\cos(\inner{x,
\omega_j} + t\omega_{ji})}\right]
\le \expectation
\left[\frac{1}{D}\sum_{j=1}^D2\abs{A(\omega_j)_{\ell
m}\omega_{ji}}\right].
\end{dmath*}
Hence
\begin{dmath*}
\expectation \abs{\frac{\partial}{\partial
t}\tilde{G}_{x,y}^{i,\ell,m}(t,\omega)} \le 2\expectation \left[\norm{\omega
\otimes A(\omega)}_1\right].
\end{dmath*}
which is assumed to exist since in finite dimensions all norms are
equivalent and $\expectation_{\mu}\left[
\norm{\omega}^2_{\dual{\mathcal{X}}}
\norm{A(\omega)}^2_{\mathcal{Y},\mathcal{Y}} \right]$ is assume to exists.
Thus applying \cref{pr:diff_under_int} we have
\begin{dmath*}
\left[\frac{\partial}{\partial \delta_i}\expectation
\tilde{K}(\delta)\right]_{\ell m} = \expectation
\frac{\partial}{\partial \delta_i} \left[\tilde{K}(\delta)\right]_{\ell
m}
\end{dmath*}
The same holds for $y$ by symmetry. Combining the results for each
component $x_i$ and for each element $\ell m$, we get that
$\frac{\partial}{\partial \delta}\expectation \tilde{K}(\delta) =
\expectation \frac{\partial}{\partial \delta}\tilde{K}(\delta)$.
\subsection{Bounding the Lipschitz constant}
Since $F$ is differentiable, $L_{F}=\norm{\frac{\partial F}{\partial
\delta}(\delta^*)}_{\mathcal{Y},\mathcal{Y}}$ where
$\delta^*=\argmax_{\delta\in\mathcal{D}_{\mathcal{C}}}\norm{\frac{\partial
F}{\partial \delta}(\delta)}_{\mathcal{Y},\mathcal{Y}}$.
\begin{dmath*}
\expectation_{\mu,\delta^*}\left[ L_F^2 \right]
= \expectation_{\mu,\delta^*} \norm{\frac{\partial \tilde{K}}{\partial
\delta}(\delta^*)-\frac{\partial K_0}{\partial
\delta}(\delta^*)}^2_{\mathcal{Y},\mathcal{Y}}
\le \expectation_{\delta^*}\left[ \expectation_{\mu}
\norm{\frac{\partial \tilde{K}}{\partial
\delta}(\delta^*)}^2_{\mathcal{Y},\mathcal{Y}} - 2\norm{\frac{\partial
K_0}{\partial
\delta}(\delta^*)}_{\mathcal{Y},\mathcal{Y}}\expectation_{\mu}
\norm{\frac{\partial \tilde{K}}{\partial
\delta}(\delta^*)}_{\mathcal{Y},\mathcal{Y}} + \norm{\frac{\partial
K_0}{\partial \delta}(\delta^*)}^2_{\mathcal{Y},\mathcal{Y}} \right]
\end{dmath*}
Using Jensen's inequality $\norm{\expectation_\mu\frac{\partial
\tilde{K}}{\partial
\delta}(\delta^*)}_2\le\expectation_\mu\norm{\frac{\partial
\tilde{K}}{\partial \delta}(\delta^*)}_2$ and $\frac{\partial}{\partial
\delta}\expectation \tilde{K}(\delta) = \expectation
\frac{\partial}{\partial \delta}\tilde{K}(\delta)$. (see
\cref{subsubsec:regularity}), $\expectation_\mu\frac{\partial
\tilde{K}}{\partial \delta}(\delta^*)=\frac{\partial}{\partial
\delta}\expectation_\mu\tilde{K}(\delta^*)=\frac{\partial K_0}{\partial
\delta}(\delta^*)$ thus
\begin{dmath*}
\expectation_{\mu,\delta^*}\left[ L_F^2 \right] \le
\expectation_{\delta^*}\left[ \expectation_\mu \norm{\frac{\partial
\tilde{K}}{\partial \delta}(\delta^*)}_2^2 - 2\norm{\frac{\partial
K_0}{\partial \delta}(\delta^*)}_2^2 + \norm{\frac{\partial
K_0}{\partial \delta}(\delta^*)}_2^2 \right]
= \expectation_{\mu,\delta^*}\norm{\frac{\partial \tilde{K}}{\partial
\delta}(\delta^*)}_2^2-\expectation_{\delta^*}\norm{\frac{\partial
K_0}{\partial \delta}(\delta^*)}_2^2 \le
\expectation_{\mu,\delta^*}\norm{\frac{\partial \tilde{K}}{\partial
\delta}(\delta^*)}_2^2
= \expectation_{\mu,\delta^*}\norm{\frac{\partial }{\partial
\delta^*}\cos h_{\omega}(x) A(\omega) }_2^2
= \expectation_{\mu,\delta^*}\norm{-h'_{\omega}(x)
\sin\left(h_{\omega}(x)\right) \otimes A(\omega)}_2^2
\le
\expectation_{\mu}\left[H_\omega_2^2 \norm{A(\omega)}_2^2\right]
\colonequals \sigma_p^2
\end{dmath*}
\end{proof}