-
Notifications
You must be signed in to change notification settings - Fork 1
/
autoencoder.py
127 lines (112 loc) · 4.77 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.functional import jvp
import numpy as np
from model import *
class AutoEncoder(nn.Module):
'''
Arguments:
input_dim: dimension of input
hidden_dim: dimension of hidden layer
latent_dim: dimension of latent layer
n_layers: number of hidden layers
n_comps: number of components
activation: activation function
flatten: whether to flatten input
Input:
x: (batch_size, n_comps, input_dim)
Output:
z: (batch_size, n_comps, latent_dim)
xhat: (batch_size, n_comps, input_dim)
'''
def __init__(self, **kwargs):
super().__init__()
ae_arch = kwargs['ae_arch']
input_dim = kwargs['input_dim']
hidden_dim = kwargs['hidden_dim']
latent_dim = kwargs['latent_dim']
n_layers = kwargs['n_layers']
n_comps = kwargs['n_comps']
activation = kwargs['activation']
batch_norm = kwargs['batch_norm']
if ae_arch == 'mlp':
self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
# Batch norm
Reshape(-1, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
nn.BatchNorm1d(hidden_dim) if batch_norm else nn.Identity(),
Reshape(-1, n_comps, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
getattr(nn, activation)(*kwargs['activation_args']),
*[nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
# Batch norm
Reshape(-1, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
nn.BatchNorm1d(hidden_dim) if batch_norm else nn.Identity(),
Reshape(-1, n_comps, hidden_dim) if batch_norm and n_comps > 1 else nn.Identity(),
getattr(nn, activation)(*kwargs['activation_args']),
) for _ in range(n_layers-1)],
nn.Linear(hidden_dim, latent_dim) if not kwargs['ortho_ae'] else orthogonal(nn.Linear(hidden_dim, latent_dim)),
Reshape(-1, latent_dim) if batch_norm and n_comps > 1 else nn.Identity(),
nn.BatchNorm1d(latent_dim) if batch_norm else nn.Identity(),
Reshape(-1, n_comps, latent_dim) if batch_norm and n_comps > 1 else nn.Identity(),
)
self.decoder = nn.Sequential(
nn.Linear(latent_dim, hidden_dim),
getattr(nn, activation)(*kwargs['activation_args']),
*[nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
getattr(nn, activation)(*kwargs['activation_args']),
) for _ in range(n_layers-1)],
nn.Linear(hidden_dim, input_dim),
)
elif ae_arch == 'mlp_split':
self.encoder = SplitModel(EncoderMLP, **kwargs)
self.decoder = SplitModel(DecoderMLP, **kwargs)
elif ae_arch == 'stick_cnn':
# input: (bs, n_comps (2), 3, 128, 256)
self.model = FullSwingStickModel(n_comps, 3)
self.encoder = self.model.encode
self.decoder = self.model.decode
elif ae_arch == 'stick_cnn_pretrain':
self.model = FullSwingStickModel(n_comps, 3, refine=False)
self.encoder = self.model.encode
self.decoder = self.model.decode
elif ae_arch == 'pendulum_cnn':
self.model = FullPendulumModel(n_comps, 3)
self.encoder = self.model.encode
self.decoder = self.model.decode
elif ae_arch == 'none':
self.encoder = nn.Identity()
self.decoder = nn.Identity()
def forward(self, x):
z = self.encode(x)
xhat = self.decode(z)
return z, xhat
def decode(self, z):
return self.decoder(z)
def encode(self, x):
return self.encoder(x)
def compute_dz(self, x, dx):
dz = jvp(self.encode, x, v=dx)[1]
return dz
def compute_dx(self, z, dz):
dx = jvp(self.decode, z, v=dz)[1]
return dx
def iga(self, g, x, normalize_z=True):
'''
Compute the infinitesimal action of the Lie algebra element g on x.
'''
z = self.encode(x)
if normalize_z: # zero mean
z = z - z.mean(dim=0, keepdim=True)
reshape_flag = len(z.shape) > 2
if reshape_flag:
v_z = torch.einsum('jk, ...k->...j', g, z.reshape(z.shape[0], -1))
else:
v_z = torch.einsum('jk, ...k->...j', g, z)
if reshape_flag:
v_z = v_z.reshape(z.shape)
# v_x = self.compute_dx(z, v_z)
v_x = jvp(self.decode, z, v=v_z, create_graph=True, strict=True)[1]
return v_x