-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathhello_world.py
57 lines (43 loc) · 2.67 KB
/
hello_world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
'''
Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this computer program.
Using this computer program means that you agree to the terms in the LICENSE file (https://flame.is.tue.mpg.de/modellicense) included
with the FLAME model. Any use not explicitly granted by the LICENSE is prohibited.
Copyright 2020 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its
Max Planck Institute for Intelligent Systems. All rights reserved.
More information about FLAME is available at http://flame.is.tue.mpg.de.
For comments or questions, please email us at flame@tue.mpg.de
'''
# This script is based on the hello-world script from SMPL python code http://smpl.is.tue.mpg.de/downloads
import numpy as np
from os.path import join
from smpl_webuser.serialization import load_model
from fitting.util import write_simple_obj, safe_mkdir
# -----------------------------------------------------------------------------
if __name__ == '__main__':
# Load FLAME model (here we load the generic model)
# Make sure path is correct
model_path = './models/generic_model.pkl'
model = load_model( model_path ) # the loaded model object is a 'chumpy' object, check https://github.com/mattloper/chumpy for details
print("loaded model from:", model_path)
# Show component number
print("\nFLAME coefficients:")
print("shape (identity) coefficient shape =", model.betas[0:300].shape) # valid shape component range in "betas": 0-299
print("expression coefficient shape =", model.betas[300:].shape) # valid expression component range in "betas": 300-399
print("pose coefficient shape =", model.pose.shape)
print("\nFLAME model components:")
print("shape (identity) component shape =", model.shapedirs[:,:,0:300].shape)
print("expression component shape =", model.shapedirs[:,:,300:].shape)
print("pose corrective blendshape shape =", model.posedirs.shape)
print("\n")
# -----------------------------------------------------------------------------
# Assign random pose and shape parameters
model.pose[:] = np.random.randn(model.pose.size) * 0.02
model.betas[:100] = np.random.randn(100) * 0.6
model.betas[300:350] = np.random.randn(50) * 0.6
# model.trans[:] = np.random.randn( model.trans.size ) * 0.01 # you may also manipulate the translation of mesh
# Write to an .obj file
outmesh_dir = './output'
safe_mkdir( outmesh_dir )
outmesh_path = join( outmesh_dir, 'hello_flame.obj')
write_simple_obj( mesh_v=model.r, mesh_f=model.f, filepath=outmesh_path )
print('output mesh saved to: ', outmesh_path)