forked from ruby/ruby
-
Notifications
You must be signed in to change notification settings - Fork 0
/
darray.h
226 lines (190 loc) · 7.15 KB
/
darray.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#ifndef RUBY_DARRAY_H
#define RUBY_DARRAY_H
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
// Type for a dynamic array. Use to declare a dynamic array.
// It is a pointer so it fits in st_table nicely. Designed
// to be fairly type-safe.
//
// NULL is a valid empty dynamic array.
//
// Example:
// rb_darray(char) char_array = NULL;
// rb_darray_append(&char_array, 'e');
// printf("pushed %c\n", *rb_darray_ref(char_array, 0));
// rb_darray_free(char_array);
//
#define rb_darray(T) struct { rb_darray_meta_t meta; T data[]; } *
// Copy an element out of the array. Warning: not bounds checked.
//
// T rb_darray_get(rb_darray(T) ary, size_t idx);
//
#define rb_darray_get(ary, idx) ((ary)->data[(idx)])
// Assign to an element. Warning: not bounds checked.
//
// void rb_darray_set(rb_darray(T) ary, size_t idx, T element);
//
#define rb_darray_set(ary, idx, element) ((ary)->data[(idx)] = (element))
// Get a pointer to an element. Warning: not bounds checked.
//
// T *rb_darray_ref(rb_darray(T) ary, size_t idx);
//
#define rb_darray_ref(ary, idx) (&((ary)->data[(idx)]))
// Copy a new element into the array. ptr_to_ary is evaluated multiple times.
//
// void rb_darray_append(rb_darray(T) *ptr_to_ary, T element);
//
// TODO: replace this with rb_darray_append_with_gc when YJIT moves to Rust.
//
#define rb_darray_append(ptr_to_ary, element) do { \
rb_darray_ensure_space((ptr_to_ary), sizeof(**(ptr_to_ary)), \
sizeof((*(ptr_to_ary))->data[0]), realloc); \
rb_darray_set(*(ptr_to_ary), \
(*(ptr_to_ary))->meta.size, \
(element)); \
(*(ptr_to_ary))->meta.size++; \
} while (0)
#define rb_darray_append_with_gc(ptr_to_ary, element) do { \
rb_darray_ensure_space((ptr_to_ary), sizeof(**(ptr_to_ary)), \
sizeof((*(ptr_to_ary))->data[0]), ruby_xrealloc); \
rb_darray_set(*(ptr_to_ary), \
(*(ptr_to_ary))->meta.size, \
(element)); \
(*(ptr_to_ary))->meta.size++; \
} while (0)
// Last element of the array
//
#define rb_darray_back(ary) ((ary)->data[(ary)->meta.size - 1])
// Remove the last element of the array.
//
#define rb_darray_pop_back(ary) ((ary)->meta.size--)
// Remove element at idx and replace it by the last element
#define rb_darray_remove_unordered(ary, idx) do { \
rb_darray_set(ary, idx, rb_darray_back(ary)); \
rb_darray_pop_back(ary); \
} while (0);
// Iterate over items of the array in a for loop
//
#define rb_darray_foreach(ary, idx_name, elem_ptr_var) \
for (size_t idx_name = 0; idx_name < rb_darray_size(ary) && ((elem_ptr_var) = rb_darray_ref(ary, idx_name)); ++idx_name)
// Iterate over valid indicies in the array in a for loop
//
#define rb_darray_for(ary, idx_name) \
for (size_t idx_name = 0; idx_name < rb_darray_size(ary); ++idx_name)
// Make a dynamic array of a certain size. All bytes backing the elements are set to zero.
// Return 1 on success and 0 on failure.
//
// Note that NULL is a valid empty dynamic array.
//
// void rb_darray_make(rb_darray(T) *ptr_to_ary, size_t size);
//
// TODO: replace this with rb_darray_make_with_gc with YJIT moves to Rust.
//
#define rb_darray_make(ptr_to_ary, size) \
rb_darray_make_impl((ptr_to_ary), size, sizeof(**(ptr_to_ary)), \
sizeof((*(ptr_to_ary))->data[0]), calloc)
#define rb_darray_make_with_gc(ptr_to_ary, size) \
rb_darray_make_impl((ptr_to_ary), size, sizeof(**(ptr_to_ary)), \
sizeof((*(ptr_to_ary))->data[0]), ruby_xcalloc)
#define rb_darray_data_ptr(ary) ((ary)->data)
// Set the size of the array to zero without freeing the backing memory.
// Allows reusing the same array.
//
#define rb_darray_clear(ary) (ary->meta.size = 0)
typedef struct rb_darray_meta {
size_t size;
size_t capa;
} rb_darray_meta_t;
// Get the size of the dynamic array.
//
static inline size_t
rb_darray_size(const void *ary)
{
const rb_darray_meta_t *meta = ary;
return meta ? meta->size : 0;
}
// Get the capacity of the dynamic array.
//
static inline size_t
rb_darray_capa(const void *ary)
{
const rb_darray_meta_t *meta = ary;
return meta ? meta->capa : 0;
}
// Free the dynamic array.
//
// TODO: replace this with rb_darray_free_with_gc when YJIT moves to Rust.
//
static inline void
rb_darray_free(void *ary)
{
free(ary);
}
static inline void
rb_darray_free_with_gc(void *ary)
{
rb_darray_meta_t *meta = ary;
ruby_sized_xfree(ary, meta->capa);
}
// Internal function. Calculate buffer size on malloc heap.
static inline size_t
rb_darray_buffer_size(size_t capacity, size_t header_size, size_t element_size)
{
if (capacity == 0) return 0;
return header_size + capacity * element_size;
}
// Internal function
// Ensure there is space for one more element.
// Note: header_size can be bigger than sizeof(rb_darray_meta_t) when T is __int128_t, for example.
static inline void
rb_darray_ensure_space(void *ptr_to_ary, size_t header_size, size_t element_size, void *(*realloc_impl)(void *, size_t))
{
rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary;
rb_darray_meta_t *meta = *ptr_to_ptr_to_meta;
size_t current_capa = rb_darray_capa(meta);
if (rb_darray_size(meta) < current_capa) return;
// Double the capacity
size_t new_capa = current_capa == 0 ? 1 : current_capa * 2;
// Calculate new buffer size
size_t current_buffer_size = rb_darray_buffer_size(current_capa, header_size, element_size);
size_t new_buffer_size = rb_darray_buffer_size(new_capa, header_size, element_size);
if (new_buffer_size <= current_buffer_size) {
rb_bug("rb_darray_ensure_space: overflow");
}
// TODO: replace with rb_xrealloc_mul_add(meta, new_capa, element_size, header_size);
rb_darray_meta_t *doubled_ary = realloc_impl(meta, new_buffer_size);
if (!doubled_ary) {
rb_bug("rb_darray_ensure_space: failed");
}
if (meta == NULL) {
// First allocation. Initialize size. On subsequence allocations
// realloc takes care of carrying over the size.
doubled_ary->size = 0;
}
doubled_ary->capa = new_capa;
// We don't have access to the type of the dynamic array in function context.
// Write out result with memcpy to avoid strict aliasing issue.
memcpy(ptr_to_ary, &doubled_ary, sizeof(doubled_ary));
}
static inline void
rb_darray_make_impl(void *ptr_to_ary, size_t array_size, size_t header_size, size_t element_size, void *(*calloc_impl)(size_t, size_t))
{
rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary;
if (array_size == 0) {
*ptr_to_ptr_to_meta = NULL;
return;
}
// TODO: replace with rb_xcalloc_mul_add(array_size, element_size, header_size)
size_t buffer_size = rb_darray_buffer_size(array_size, header_size, element_size);
rb_darray_meta_t *meta = calloc_impl(buffer_size, 1);
if (!meta) {
rb_bug("rb_darray_make_impl: failed");
}
meta->size = array_size;
meta->capa = array_size;
// We don't have access to the type of the dynamic array in function context.
// Write out result with memcpy to avoid strict aliasing issue.
memcpy(ptr_to_ary, &meta, sizeof(meta));
}
#endif /* RUBY_DARRAY_H */