-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpriority.py
479 lines (343 loc) · 17.7 KB
/
priority.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
############################################################################
############################################################################
# THIS IS THE ONLY FILE YOU SHOULD EDIT
#
#
# Agent must always have these five functions:
# __init__(self)
# has_finished_episode(self)
# get_next_action(self, state)
# set_next_state_and_distance(self, next_state, distance_to_goal)
# get_greedy_action(self, state)
#
#
# You may add any other functions as you wish
############################################################################
############################################################################
import numpy as np
import torch
import time
import collections
import random
class Agent:
# Function to initialise the agent
def __init__(self):
# Set the episode length
self.episode_length = 300
# Reset the total number of steps which the agent has taken
self.num_steps_taken = 0
# The state variable stores the latest state of the agent in the environment
self.state = None
# The action variable stores the latest action which the agent has applied to the environment
self.action = None
# Action types
self.actions = [0, 1, 2, 3]
# Probability of each action
self.probabilities = [0.1, 0.3, 0.3, 0.3]
# Initialise epsilon value
self.epsilon = 1
# Initialise our Q-Network
self.dqn = DQN()
# Initialise the Prioritised Buffer
self.p_buffer = PrioritisedBuffer()
# Step counter per episode
self.step_tick = self.num_steps_taken
# Episode Counter
self.episode = 0
# Q-update
self.q_update = 15
# Epoch List
self.epoch = []
# Losses per step in an episode
self.losses = []
# Average Losses per episode
self.avg_loss = []
# Average step loss
self.average_loss = 0
# Buffer Size before training the Q-network
self.buffer_size = 300
# Counter for when the one episode doesn't fit Buffer_size
self.tick = 0
# Time that the program started.
self.start_time = time.time()
self.elapsed = 0
# Epsilon list
self.epsilon_list = []
# Reward_list
self.reward_list = []
# Avg Reward per ep
self.avg_reward = []
#
self.distance = []
# Create a list to hold the delta values
self.deltas = []
# Weight Constant
self.w_const = 0.01
# Alpha Parameter
self.alpha = 10
# Sample Probability for Transitions
self.sample_probability = []
# Function to check whether the agent has reached the end of an episode
def has_finished_episode(self):
# check if it is actually a new episode
if self.step_tick == self.episode_length:
self.elapsed = int(time.time() - self.start_time)
self.epsilon = self.epsilon_cosine_decay(self.elapsed)
self.epsilon_list.append(self.epsilon)
# epsilon decreases on the amount of time has passed relative to total time
#self.epsilon = self.epsilon - elapse
self.epoch.append(self.episode)
print(f'Episode: {self.episode} Epsilon: {self.epsilon}')
# Decay the epsilon value
#self.epsilon = max(0.05, 0.99*self.epsilon)
#self.epsilon = self.epsilon - 0.035
# Increase episode by 1
self.episode+=1
# Reset the step counter
self.step_tick = self.num_steps_taken
buffer_list = PrioritisedBuffer().p_buffer
buff_size = self.buffer_size
if len(buffer_list) > buff_size:
self.average_loss = sum(self.losses)/len(self.losses)
self.avg_loss.append(self.average_loss)
else:
self.tick+=1
self.avg_loss.append(0)
self.avg_reward.append(sum(self.reward_list)/len(self.reward_list))
return True
else:
return False
# Function for the agent to choose its next action
def _choose_next_action(self, eps):
if self.epsilon > random.uniform(0,1):
discrete_action = np.random.choice(self.actions, 1, self.probabilities)[0]
else:
s_t = torch.tensor(self.state, dtype = torch.float32)
q_epsilon = self.dqn.q_network.forward(s_t)
q_epsilon = q_epsilon.detach().numpy()
discrete_action = np.argmax(q_epsilon)
#discrete_action = self._get_greedy_action(self.state)
# Return a random discrete action between 0 and 3.
return int(discrete_action)
# Function to convert discrete action (as used by a DQN) to a continuous action (as used by the environment).
def _discrete_action_to_continuous(self, discrete_action):
if discrete_action == 0:
# Move 0.1 leftwards
continuous_action = np.array([-0.02, 0], dtype=np.float32)
elif discrete_action == 1:
# Move 0.1 rightwards
continuous_action = np.array([0.02, 0], dtype=np.float32)
elif discrete_action == 2:
# Move 0.1 upwards
continuous_action = np.array([0, 0.02], dtype=np.float32)
elif discrete_action == 3:
# Move 0.1 downwards
continuous_action = np.array([0, -0.02], dtype=np.float32)
return continuous_action
# Function to get the next action, using whatever method you like
def get_next_action(self, state):
# Choose the next action.
discrete_action = self._choose_next_action(self.epsilon)
# Convert the discrete action into a continuous action.
continuous_action = self._discrete_action_to_continuous(discrete_action)
# Store the state; this will be used later, when storing the transition
self.state = state
# Store the action; this will be used later, when storing the transition
self.action = discrete_action
return continuous_action
# Function to set the next state and distance, which resulted from applying action self.action at state self.state
def set_next_state_and_distance(self, next_state, distance_to_goal):
self.step_tick+=1
# Convert the distance to a reward
if np.all(self.state == next_state):
reward = (1 - distance_to_goal)/5
# If the agent is around halfway to the goal increase the reward
elif distance_to_goal < 0.5:
reward = 1.05*(1 - distance_to_goal)
elif distance_to_goal < 0.49:
reward = 1.08*(1-distance_to_goal)
elif distance_to_goal < 0.3:
reward = 1.5*(1-distance_to_goal)
else:
reward = 1 - distance_to_goal
self.reward_list.append(reward)
# Create a transition
transition = (self.state, self.action, reward, next_state)
if self.dqn.priori_buffer.__len__() >= self.dqn.sample_size:
self.dqn.train_q_network()
self.epsilon = max(self.epsilon - self.delta, 0.15)
if self.num_steps_taken % 50 == 0:
self.dqn.update_target_network()
def _load_snapshot_state(self):
if not self.optimal_policy_loaded and self.snapshot_manager.stores_snapshot():
optimal_weights = self.snapshot_manager.get_optimal_weights()
self.dqn.q_network.load_state_dict(optimal_weights)
self.optimal_policy_loaded = True
self.dqn.q_network.eval()
def epsilon_cosine_decay(self, elapse):
lam = 0.04
A = 0.2
return 0.8 + (-elapse/800) + A * np.exp(-lam*elapse) * np.cos(elapse)
# Function for the agent to choose its next action
def _choose_next_greedy_action(self, state):
s_t = torch.tensor(state, dtype = torch.float32)
q_epsilon = self.dqn.q_network.forward(s_t)
q_epsilon = q_epsilon.detach().numpy()
discrete_action = np.argmax(q_epsilon)
# Return a random discrete action between 0 and 3.
return int(discrete_action)
def get_greedy_action(self, state):
self.state = state
return self._discrete_action_to_continuous(self._choose_next_action(0))
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
self.dqn.q_network.eval()
with torch.no_grad():
actions = self.dqn.q_network.forward(state_tensor).squeeze(0)
self.dqn.q_network.train()
return np.argmax(actions.numpy())
# Function to get the greedy action for a particular state
def get_greedy_action_(self, state):
# Here, the greedy action is fixed, but you should change it so that it returns the action with the highest Q-value
s_t = torch.tensor(state, dtype = torch.float32)
greedy = self.dqn.q_network.forward(s_t)
greedy = greedy.detach().numpy()
discrete_action = np.argmax(greedy)
continuous_action = self._discrete_action_to_continuous(discrete_action)
return continuous_action
class PrioritisedBuffer:
def __init__(self):
self.p_buffer = collections.deque(maxlen=100000)
self.sample_size = 200
self.buffer = collections.deque(maxlen=10000)
self.minimum_prob = 0.05
def app(self, transition):
self.buffer.appendleft(transition)
self.p.appendleft(self.min_p)
def upweight(self, index):
for i in index:
self.p_buffer[i] = self.minimum_prob * 2
def at_threshold(self):
return self.buffer.__len__() >= self.sample_size
def sampling(self):
buffer_size = self.buffer.__len__()
probability = np.array(self.p_buffer)
probability = probability / np.sum(probability)
samples = np.random.choice(np.arange(buffer_size), size= self.sample_size, replace = False, p = probability)
states = []
actions = []
rewards = []
next_state = []
for i in samples:
s, a, r, s_n = self.buffer[i]
states.append(s)
actions.append(a)
rewards.append(r)
next_state.append(s_n)
states = np.array(states, dtype=np.float32)
rewards = np.array(rewards, dtype=np.float64).reshape(-1, 1)
actions = np.array(actions, dtype=np.int64).reshape(-1, 1)
next_state = np.array(next_state, dtype=np.float32)
return states, actions, rewards, next_state, samples
# The Network class inherits the torch.nn.Module class, which represents a neural network.
class Network(torch.nn.Module):
# The class initialisation function. This takes as arguments the dimension of the network's input (i.e. the dimension of the state), and the dimension of the network's output (i.e. the dimension of the action).
def __init__(self, input_dimension, output_dimension):
# Call the initialisation function of the parent class.
super(Network, self).__init__()
# Define the network layers. This example network has two hidden layers, each with 100 units.
self.layer_1 = torch.nn.Linear(in_features=input_dimension, out_features=100)
self.layer_2 = torch.nn.Linear(in_features=100, out_features=100)
self.output_layer = torch.nn.Linear(in_features=100, out_features=output_dimension)
# Function which sends some input data through the network and returns the network's output. In this example, a ReLU activation function is used for both hidden layers, but the output layer has no activation function (it is just a linear layer).
def forward(self, input):
layer_1_output = torch.nn.functional.relu(self.layer_1(input))
layer_2_output = torch.nn.functional.relu(self.layer_2(layer_1_output))
output = self.output_layer(layer_2_output)
return output
# The DQN class determines how to train the above neural network.
class DQN:
# The class initialisation function.
def __init__(self):
# Create a Q-network, which predicts the q-value for a particular state.
self.q_network = Network(input_dimension=2, output_dimension=4)
# Create a Q-Target Network
self.qtarget_network = Network(input_dimension=2, output_dimension=4)
# Define the optimiser which is used when updating the Q-network. The learning rate determines how big each gradient step is during backpropagation.
self.optimiser = torch.optim.Adam(self.q_network.parameters(), lr=0.01)
# Call the Prioritised Buffer Class
self.priori_buffer = PrioritisedBuffer()
# Function that is called whenever we want to train the Q-network. Each call to this function takes in a transition tuple containing the data we use to update the Q-network.
def train_q_network(self, minibatch_inputs):
# Set all the gradients stored in the optimiser to zero.
self.optimiser.zero_grad()
minibatch_inputs = self.replay_buffer.random_sample()
# Calculate the loss for this transition.
loss = self._calculate_loss(minibatch_inputs)
loss_value = torch.tensor(loss).item()
Agent.losses.append(loss_value)
# Compute the gradients based on this loss, i.e. the gradients of the loss with respect to the Q-network parameters.
loss.backward()
# Take one gradient step to update the Q-network.
self.optimiser.step()
# Return the loss as a scalar
return loss.item()
def update_target_network(self):
weights = self.q_network.state_dict()
self.qtarget_network.load_state_dict(weights)
def _calculate_loss(self, minibatch):
# Function to calculate the loss for a particular transition.
# Transition = (state, action, reward, next state)
gamma = torch.tensor([0.99], dtype=torch.float32)
states = []
actions = []
rewards = []
future_state = [] # will hold the future states for each iteration
if PrioritisedBuffer().p_buffer.__len__() < Agent().buffer_size:
states.append(minibatch[0])
actions.append(minibatch[1])
rewards.append(minibatch[2])
future_state.append(minibatch[3])
states_tensor = torch.tensor(states, dtype=torch.float32)
actions_tensor = torch.tensor(actions, dtype=torch.int64)
rewards_tensor = torch.tensor(rewards, dtype=torch.float32)
future_tensor = torch.tensor(future_state, dtype=torch.float32)
a=actions_tensor.unsqueeze(0)
else:
for t in range(0, 100):
states.append(minibatch[t][0])
actions.append(minibatch[t][1])
rewards.append(minibatch[t][2])
future_state.append(minibatch[t][3])
states_tensor = torch.tensor(states, dtype=torch.float32)
actions_tensor = torch.tensor(actions, dtype=torch.int64)
rewards_tensor = torch.tensor(rewards, dtype=torch.float32)
future_tensor = torch.tensor(future_state, dtype=torch.float32)
a=np.reshape(actions_tensor.unsqueeze(0),(100,1))
# [100,1] Action tensor
#print(actions_tensor)
# Gathers the Q-values for the current state given the action
q_values = self.q_network.forward(states_tensor).gather(dim=1, index=a)
# this gets the max Q for a future action
q_target_values = self.qtarget_network.forward(future_tensor).max(1)[0]
# this computes the bellman equation
q_target = rewards_tensor.squeeze(-1) + gamma * q_target_values
loss = torch.nn.MSELoss()(q_values.squeeze(-1), q_target)
return loss
class Weight_Updater:
def __init__(self):
self.min_steps_to_goal = 1000 # magic number, assume 100 or less steps in testing
self.min_distance_to_goal = 1
self.weights = None
def keep(self, num_steps, weights):
self.min_steps_to_goal = num_steps
self.weights = weights
def promising_weights(self, distance, weights):
if distance < self.min_distance_to_goal and self.min_steps_to_goal == 1000:
self.min_distance_to_goal = distance
self.weights = weights
def get_best_weights(self):
return self.weights
def get_min_steps_to_goal(self):
return self.min_steps_to_goal
def stores_snapshot(self):
return self.weights is not None