-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDESCRIPTION
39 lines (39 loc) · 1.78 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Package: SGDinference
Type: Package
Title: Inference with Stochastic Gradient Descent
Version: 0.1.0
Authors@R: c(
person("Sokbae", "Lee", email = "sl3841@columbia.edu", role = "aut"),
person("Yuan", "Liao", email = "yuan.liao@rutgers.edu", role = "aut"),
person("Myung Hwan", "Seo", email = "myunghseo@snu.ac.kr", role = "aut"),
person("Youngki", "Shin", email = "shiny11@mcmaster.ca", role = c("aut", "cre")))
Description: Estimation and inference methods for large-scale mean and quantile regression models via stochastic (sub-)gradient descent (S-subGD) algorithms.
The inference procedure handles cross-sectional data sequentially:
(i) updating the parameter estimate with each incoming "new observation",
(ii) aggregating it as a Polyak-Ruppert average, and
(iii) computing an asymptotically pivotal statistic for inference through random scaling.
The methodology used in the SGDinference package is described in detail in the following papers:
(i) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2022) <doi:10.1609/aaai.v36i7.20701> "Fast and robust online inference with stochastic gradient descent via random scaling".
(ii) Lee, S., Liao, Y., Seo, M.H. and Shin, Y. (2023) <arXiv:2209.14502> "Fast Inference for Quantile Regression with Tens of Millions of Observations".
License: GPL-3
Imports:
stats,
Rcpp (>= 1.0.5)
LinkingTo: Rcpp, RcppArmadillo
RoxygenNote: 7.2.3
Encoding: UTF-8
Suggests:
knitr,
rmarkdown,
testthat (>= 3.0.0),
lmtest (>= 0.9),
sandwich (>= 3.0),
microbenchmark (>= 1.4),
conquer (>= 1.3.3)
VignetteBuilder: knitr
Config/testthat/edition: 3
Depends:
R (>= 2.10)
LazyData: true
URL: https://github.com/SGDinference-Lab/SGDinference/
BugReports: https://github.com/SGDinference-Lab/SGDinference/issues