-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_imagenet.py
221 lines (193 loc) · 10.6 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import os
import time
import socket
import logging
from datetime import datetime
from functools import partial
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
from torch.autograd import Variable
from tensorboardX import SummaryWriter
import models
from models.losses import CrossEntropyLossSoft
from datasets.data import get_dataset, get_transform
from optimizer import get_optimizer_config, get_lr_scheduler
from utils import setup_logging, save_checkpoint
from utils import AverageMeter, accuracy
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--results-dir', default='./results', help='results dir')
parser.add_argument('--dataset', default='imagenet', help='dataset name or folder')
parser.add_argument('--train_split', default='train', help='train split name')
parser.add_argument('--model', default='resnet18', help='model architecture')
parser.add_argument('--workers', default=16, type=int, help='number of data loading workers')
parser.add_argument('--epochs', default=100, type=int, help='number of epochs')
parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number')
parser.add_argument('--batch-size', default=128, type=int, help='mini-batch size')
parser.add_argument('--optimizer', default='sgd', help='optimizer function used')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--lr_decay', default='100,150,180', help='lr decay steps')
parser.add_argument('--weight-decay', default=3e-4, type=float, help='weight decay')
parser.add_argument('--print-freq', '-p', default=20, type=int, help='print frequency')
parser.add_argument('--pretrain', default=None, help='path to pretrained full-precision checkpoint')
parser.add_argument('--resume', default=None, help='path to latest checkpoint')
parser.add_argument('--bit_width_list', default='4', help='bit width list')
args = parser.parse_args()
def main():
hostname = socket.gethostname()
setup_logging(os.path.join(args.results_dir, 'log_{}.txt'.format(hostname)))
logging.info("running arguments: %s", args)
torch.backends.cudnn.benchmark = True
train_transform = get_transform(args.dataset, 'train')
train_data = get_dataset(args.dataset, args.train_split, train_transform)
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
val_transform = get_transform(args.dataset, 'val')
val_data = get_dataset(args.dataset, 'val', val_transform)
val_loader = torch.utils.data.DataLoader(val_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
bit_width_list = list(map(int, args.bit_width_list.split(',')))
bit_width_list.sort()
model = models.__dict__[args.model](bit_width_list, train_data.num_classes).cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
lr_decay = list(map(int, args.lr_decay.split(',')))
optimizer = get_optimizer_config(model, args.optimizer, args.lr, args.weight_decay)
lr_scheduler = None
best_prec1 = None
if args.resume and args.resume != 'None':
if os.path.isdir(args.resume):
args.resume = os.path.join(args.resume, 'model_best.pth.tar')
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume, map_location='cuda:0')
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler = get_lr_scheduler(args.optimizer, optimizer, lr_decay, checkpoint['epoch'])
logging.info("loaded resume checkpoint '%s' (epoch %s)", args.resume, checkpoint['epoch'])
else:
raise ValueError('Pretrained model path error!')
elif args.pretrain and args.pretrain != 'None':
if os.path.isdir(args.pretrain):
args.pretrain = os.path.join(args.pretrain, 'model_best.pth.tar')
if os.path.isfile(args.pretrain):
checkpoint = torch.load(args.pretrain, map_location='cuda:0')
model.load_state_dict(checkpoint['state_dict'], strict=False)
logging.info("loaded pretrain checkpoint '%s' (epoch %s)", args.pretrain, checkpoint['epoch'])
else:
raise ValueError('Pretrained model path error!')
if lr_scheduler is None:
lr_scheduler = get_lr_scheduler(args.optimizer, optimizer, lr_decay)
num_parameters = sum([l.nelement() for l in model.parameters()])
logging.info("number of parameters: %d", num_parameters)
criterion = nn.CrossEntropyLoss().cuda()
criterion_soft = CrossEntropyLossSoft().cuda()
sum_writer = SummaryWriter(args.results_dir + '/summary')
for epoch in range(args.start_epoch, args.epochs):
model.train()
train_loss, train_prec1, train_prec5 = forward(train_loader, model, criterion, criterion_soft, epoch, True,
optimizer, sum_writer)
model.eval()
val_loss, val_prec1, val_prec5 = forward(val_loader, model, criterion, criterion_soft, epoch, False)
if isinstance(lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
lr_scheduler.step(val_loss)
else:
lr_scheduler.step()
if best_prec1 is None:
is_best = True
best_prec1 = val_prec1[-1]
else:
is_best = val_prec1[-1] > best_prec1
best_prec1 = max(val_prec1[-1], best_prec1)
save_checkpoint(
{
'epoch': epoch + 1,
'model': args.model,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict()
},
is_best,
path=args.results_dir + '/ckpt')
if sum_writer is not None:
sum_writer.add_scalar('lr', optimizer.param_groups[0]['lr'], global_step=epoch)
for bw, tl, tp1, tp5, vl, vp1, vp5 in zip(bit_width_list, train_loss, train_prec1, train_prec5, val_loss,
val_prec1, val_prec5):
sum_writer.add_scalar('train_loss_{}'.format(bw), tl, global_step=epoch)
sum_writer.add_scalar('train_prec_1_{}'.format(bw), tp1, global_step=epoch)
sum_writer.add_scalar('train_prec_5_{}'.format(bw), tp5, global_step=epoch)
sum_writer.add_scalar('val_loss_{}'.format(bw), vl, global_step=epoch)
sum_writer.add_scalar('val_prec_1_{}'.format(bw), vp1, global_step=epoch)
sum_writer.add_scalar('val_prec_5_{}'.format(bw), vp5, global_step=epoch)
logging.info('Epoch {}: \ntrain loss {:.2f}, train prec1 {:.2f}, train prec5 {:.2f}\n'
' val loss {:.2f}, val prec1 {:.2f}, val prec5 {:.2f}'.format(
epoch, train_loss[-1], train_prec1[-1], train_prec5[-1], val_loss[-1], val_prec1[-1],
val_prec5[-1]))
def forward(data_loader, model, criterion, criterion_soft, epoch, training=True, optimizer=None, sum_writer=None):
bit_width_list = list(map(int, args.bit_width_list.split(',')))
bit_width_list.sort()
losses = [AverageMeter() for _ in bit_width_list]
top1 = [AverageMeter() for _ in bit_width_list]
top5 = [AverageMeter() for _ in bit_width_list]
for i, (input, target) in enumerate(data_loader):
if not training:
with torch.no_grad():
input = input.cuda()
target = target.cuda(non_blocking=True)
for bw, am_l, am_t1, am_t5 in zip(bit_width_list, losses, top1, top5):
model.apply(lambda m: setattr(m, 'wbit', bw))
model.apply(lambda m: setattr(m, 'abit', bw))
output = model(input)
loss = criterion(output, target)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
am_l.update(loss.item(), input.size(0))
am_t1.update(prec1.item(), input.size(0))
am_t5.update(prec5.item(), input.size(0))
else:
input = input.cuda()
target = target.cuda(non_blocking=True)
optimizer.zero_grad()
# train full-precision supervisor
model.apply(lambda m: setattr(m, 'wbit', bit_width_list[-1]))
model.apply(lambda m: setattr(m, 'abit', bit_width_list[-1]))
output = model(input)
loss = criterion(output, target)
loss.backward()
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses[-1].update(loss.item(), input.size(0))
top1[-1].update(prec1.item(), input.size(0))
top5[-1].update(prec5.item(), input.size(0))
# train less-bit-wdith models
target_soft = torch.nn.functional.softmax(output.detach(), dim=1)
for j, (bw, am_l, am_t1, am_t5) in enumerate(
zip(bit_width_list[:-1][::-1], losses[:-1][::-1], top1[:-1][::-1], top5[:-1][::-1])):
model.apply(lambda m: setattr(m, 'wbit', bw))
model.apply(lambda m: setattr(m, 'abit', bw))
output = model(input)
# hard cross entropy
# loss = criterion(output, target)
# soft cross entropy
loss = criterion_soft(output, target_soft)
loss.backward()
# recursive supervision
target_soft = torch.nn.functional.softmax(output.detach(), dim=1)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
am_l.update(loss.item(), input.size(0))
am_t1.update(prec1.item(), input.size(0))
am_t5.update(prec5.item(), input.size(0))
optimizer.step()
if i % args.print_freq == 0:
logging.info('epoch {0}, iter {1}/{2}, bit_width_max loss {3:.2f}, prec1 {4:.2f}, prec5 {5:.2f}'.format(
epoch, i, len(data_loader), losses[-1].val, top1[-1].val, top5[-1].val))
return [_.avg for _ in losses], [_.avg for _ in top1], [_.avg for _ in top5]
if __name__ == '__main__':
main()