-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinit_learning_factory_from_cypher_file.py
250 lines (194 loc) · 7.42 KB
/
init_learning_factory_from_cypher_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
SINDIT: fischertechnik learning factory
author: Timo Peter <timo.peter@sintef.no>
"""
from datetime import datetime
import os
import sys
import py2neo
from graph_domain.expert_annotations.AnnotationPreIndicatorNode import (
AnnotationPreIndicatorNodeFlat,
)
from util.environment_and_configuration import get_environment_variable
import boto3
from botocore.client import Config
import cadquery
import cqkit
from util.log import logger
LEARNING_FACTORY_CYPHER_FILE = "learning_factory_instance/learning_factory.cypher"
LEARNING_FACTORY_BINARIES_IMPORT_FOLDER = "./learning_factory_instance/binaries_import/"
# Read Config
NEO4J_HOST = get_environment_variable(key="NEO4J_DB_HOST", optional=False)
NEO4J_PORT = get_environment_variable(key="NEO4J_DB_PORT", optional=False)
NEO4J_DB_NAME = get_environment_variable(key="NEO4J_DB_NAME", optional=False)
NEO4J_USER = get_environment_variable(key="NEO4J_DB_USER", optional=True)
NEO4J_PW = get_environment_variable(key="NEO4J_DB_PW", optional=True)
S3_HOST = get_environment_variable(key="MINIO_S3_HOST", optional=False)
S3_PORT = get_environment_variable(key="MINIO_S3_PORT", optional=False)
S3_URI = S3_HOST + ":" + S3_PORT
S3_USER = get_environment_variable(
key="MINIO_S3_USER", optional=True, default="sindit_minio_access_key"
)
S3_PASSWORD = get_environment_variable(
key="MINIO_S3_PASSWORD", optional=True, default="sindit_minio_secret_key"
)
S3_BUCKET_NAME = "sindit" # Bucket name stored in graph!
def _get_neo4j_graph():
uri = f"bolt://{get_environment_variable(key='NEO4J_DB_HOST', optional=False)}:{get_environment_variable(key='NEO4J_DB_PORT', optional=False)}"
if NEO4J_USER is not None and NEO4J_PW is not None:
auth = (NEO4J_USER, NEO4J_PW)
elif NEO4J_USER is not None:
auth = (NEO4J_USER, None)
else:
auth = None
return py2neo.Graph(uri, name=NEO4J_DB_NAME, auth=auth)
def setup_knowledge_graph():
g = _get_neo4j_graph()
tx = g.begin()
# Delete everything
g.delete_all()
with open(LEARNING_FACTORY_CYPHER_FILE, "r") as cypher_file:
cypher_query = cypher_file.read().strip()
g.run(cypher_query)
# # Create node with datetime
# node = AnnotationPreIndicatorNodeFlat(
# iri="testiri",
# id_short="test_id_short",
# _creation_date_time=datetime.now(),
# indicator_start_date_time=datetime.now(),
# indicator_end_date_time=datetime.now(),
# )
# g.create(node)
g.commit(tx)
def import_binary_data():
s3_client = boto3.client(
"s3",
endpoint_url=S3_URI,
aws_access_key_id=S3_USER,
aws_secret_access_key=S3_PASSWORD,
config=Config(signature_version="s3v4"),
# region_name="eu-north-1", # ignore region functionality
)
s3_resource = boto3.resource(
"s3",
endpoint_url=S3_URI,
aws_access_key_id=S3_USER,
aws_secret_access_key=S3_PASSWORD,
config=Config(signature_version="s3v4"),
# region_name="eu-north-1", # ignore region functionality
)
if not S3_BUCKET_NAME in [b["Name"] for b in s3_client.list_buckets()["Buckets"]]:
s3_client.create_bucket(Bucket=S3_BUCKET_NAME)
bucket = s3_resource.Bucket(S3_BUCKET_NAME)
bucket.objects.all().delete()
g = _get_neo4j_graph()
file_list = g.run("MATCH (f:SUPPLEMENTARY_FILE) RETURN f.file_name, f.iri").data()
logger.info("Storing files in S3:")
for file in file_list:
logger.info(f"{file['f.file_name']}")
bucket.upload_file(
LEARNING_FACTORY_BINARIES_IMPORT_FOLDER + file["f.file_name"], file["f.iri"]
)
# upload a file from local file system '/home/john/piano.mp3' to bucket 'songs' with 'piano.mp3' as the object name.
# s3.Bucket("songs").upload_file(
# LEARNING_FACTORY_BINARIES_IMPORT_FOLDER + "", "piano.mp3"
# )
# # download the object 'piano.mp3' from the bucket 'songs' and save it to local FS as /tmp/classical.mp3
# s3.Bucket("songs").download_file("piano.mp3", "/tmp/classical.mp3")
def generate_alternative_cad_format():
s3_client = boto3.client(
"s3",
endpoint_url=S3_URI,
aws_access_key_id=S3_USER,
aws_secret_access_key=S3_PASSWORD,
config=Config(signature_version="s3v4"),
# region_name="eu-north-1", # ignore region functionality
)
s3_resource = boto3.resource(
"s3",
endpoint_url=S3_URI,
aws_access_key_id=S3_USER,
aws_secret_access_key=S3_PASSWORD,
config=Config(signature_version="s3v4"),
# region_name="eu-north-1", # ignore region functionality
)
bucket = s3_resource.Bucket(S3_BUCKET_NAME)
g = _get_neo4j_graph()
step_cad_file_list = g.run(
'MATCH (f:SUPPLEMENTARY_FILE {type: "CAD_STEP"}) WHERE NOT (f)-[:SECONDARY_FORMAT]-(:SUPPLEMENTARY_FILE {type: "CAD_STL"}) RETURN f.file_name, f.iri, f.id_short, f.description'
).data()
logger.info(
f"Generating STL-files as alternative for STEP files. Total: {len(step_cad_file_list)}"
)
tx = g.begin()
i = 1
for file in step_cad_file_list:
logger.info(
f"Converting {file['f.file_name']} ({i}/{len(step_cad_file_list)})..."
)
# Arguments:
file_name = file["f.file_name"] + ".stl"
file_path = LEARNING_FACTORY_BINARIES_IMPORT_FOLDER + file_name
id_short = file["f.id_short"] + "_stl_conversion"
iri = file["f.iri"] + "_stl_conversion"
description = (
(
file["f.description"]
+ f" (Converted automatically to STL for visualization on {datetime.now().isoformat()}. This conversion is not loss-free!)"
),
)
# Convert file
step_import = cqkit.importers.importStep(
LEARNING_FACTORY_BINARIES_IMPORT_FOLDER + file["f.file_name"]
)
cqkit.export_stl_file(step_import, file_path, tolerance=1000000000)
# Upload file
bucket.upload_file(file_path, iri)
# Delete the generated file locally
os.remove(file_path)
# Create node and relationship for KG-DT
node = py2neo.Node(
"SUPPLEMENTARY_FILE",
iri=iri,
id_short=id_short,
description=description,
type="CAD_STL",
file_name=file_name,
)
g.create(node)
relationship = py2neo.Relationship(
py2neo.NodeMatcher(g)
.match("SUPPLEMENTARY_FILE", iri=file["f.iri"])
.first(),
"SECONDARY_FORMAT",
node,
)
g.create(relationship)
# Relationship to database node
db_relationship = py2neo.Relationship(
node,
"FILE_DB_ACCESS",
py2neo.NodeMatcher(g)
.match("DATABASE_CONNECTION")
.where(
'(_)<-[:FILE_DB_ACCESS]-(: SUPPLEMENTARY_FILE {iri: "'
+ file["f.iri"]
+ '"})'
)
.first(),
)
g.create(db_relationship)
i += 1
g.commit(tx)
if __name__ == "__main__":
user_input = input(
"Do you really want to initialize the toy factory Knowledge Graph Digital Twin instance? Current data will be lost! (y/n)"
)
if user_input != "y":
sys.exit()
user_input = input("Are you sure? (y/n)")
if user_input != "y":
sys.exit()
setup_knowledge_graph()
import_binary_data()
generate_alternative_cad_format()