-
Notifications
You must be signed in to change notification settings - Fork 0
/
StackComposed_algorithm.py
239 lines (207 loc) · 9.53 KB
/
StackComposed_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# -*- coding: utf-8 -*-
"""
/***************************************************************************
StackComposed
A QGIS plugin processing
Compute and generate the composed of a raster images stack
-------------------
copyright : (C) 2021-2022 by Xavier Corredor Llano, SMByC
email : xavier.corredor.llano@gmail.com
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
"""
import os
from multiprocessing import cpu_count
from qgis.PyQt.QtGui import QIcon
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (QgsProcessing,
QgsProcessingAlgorithm,
QgsProcessingParameterMultipleLayers,
QgsProcessingParameterRasterDestination, QgsProcessingParameterNumber,
QgsProcessingParameterEnum, QgsProcessingParameterDefinition)
from StackComposed.core import stack_composed
class StackComposedAlgorithm(QgsProcessingAlgorithm):
"""
This algorithm compute a specific statistic using the time
series of all pixels across (the time) all raster in the specific band
"""
# Constants used to refer to parameters and outputs. They will be
# used when calling the algorithm from another algorithm, or when
# calling from the QGIS console.
INPUTS = 'INPUTS'
STAT = 'STAT'
BAND = 'BAND'
NODATA_INPUT = 'NODATA_INPUT'
DATA_TYPE = 'DATA_TYPE'
NUM_PROCESS = 'NUM_PROCESS'
CHUNKS = 'CHUNKS'
OUTPUT = 'OUTPUT'
STAT_KEYS = ['median', 'mean', 'gmean', 'max', 'min', 'std', 'valid_pixels', 'last_pixel', 'jday_last_pixel',
'jday_median', 'linear_trend']
STAT_DESC = ['Median', 'Arithmetic mean', 'Geometric mean', 'Maximum value', 'Minimum value', 'Standard deviation',
'Number of valid pixels', 'Last valid pixel (required filename as metadata)',
'Julian day of the last valid pixel (required filename as metadata)',
'Julian day of the median value (required filename as metadata)',
'Linear trend least-squares method (required filename as metadata)']
TYPES = ['Default', 'Byte', 'UInt16', 'Int16', 'UInt32', 'Int32', 'Float32', 'Float64']
def __init__(self):
super().__init__()
def tr(self, string, context=''):
if context == '':
context = self.__class__.__name__
return QCoreApplication.translate(context, string)
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it.
"""
html_help = '''
<p>StackComposed is a Qgis plugin processing that compute the stack composed (assemble and reduce) using a \
statistic to get the final value. The input stack layers is, for example a time series of georeferenced data \
(such as Landsat images) and they can be different scenes or have different extents to generate a mosaic. \
The result is an assembled image, with a wrapper extent for all input data, with the pixel values resulting \
from the statistic for the specific band for all the valid pixels across the time axis (z-axis), in a parallel \
process.</p>
<h3 id="recommendation-for-data-input">Recommendation for input data</h3>
<p>There are some recommendation for input data for process it, all input images need:</p>
- To be in the same projection
- Have the same pixel size
- Have pixel registration
<p>For the moment, the image formats support are: <code>tif</code>, <code>img</code> and <code>ENVI</code> (hdr)</p>
'''
return html_help
def createInstance(self):
return StackComposedAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'Assemble and reduce an image stack'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr(self.name())
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return None
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return None
def icon(self):
return QIcon(":/plugins/StackComposed/icons/stack_composed.svg")
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
parameter_input = \
QgsProcessingParameterMultipleLayers(
self.INPUTS,
self.tr('All input raster files to process'),
QgsProcessing.TypeRaster,
)
parameter_input.setMinimumNumberInputs(2)
self.addParameter(parameter_input)
self.addParameter(
QgsProcessingParameterEnum(
self.STAT,
self.tr('Statistic for compute the composed'),
self.STAT_DESC,
allowMultiple=False,
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.BAND,
self.tr('Set the band number to process'),
type=QgsProcessingParameterNumber.Integer,
minValue=1,
defaultValue=1,
optional=False
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.NODATA_INPUT,
self.tr('Input pixel value to treat as "nodata"'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=None,
optional=True
)
)
self.addParameter(
QgsProcessingParameterEnum(
self.DATA_TYPE,
self.tr('Output data type'),
self.TYPES,
allowMultiple=False,
defaultValue='Default',
)
)
parameter_num_process = \
QgsProcessingParameterNumber(
self.NUM_PROCESS,
self.tr('Set the number of process'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=cpu_count(),
optional=True
)
parameter_num_process.setFlags(parameter_num_process.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(parameter_num_process)
parameter_chunks = \
QgsProcessingParameterNumber(
self.CHUNKS,
self.tr('Chunks size for parallel process'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=500,
optional=True
)
parameter_chunks.setFlags(parameter_chunks.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(parameter_chunks)
self.addParameter(
QgsProcessingParameterRasterDestination(
self.OUTPUT,
self.tr('Output raster stack composed')
)
)
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
layers = self.parameterAsLayerList(parameters, self.INPUTS, context)
images_files = [os.path.realpath(layer.source().split("|layername")[0]) for layer in layers]
output_file = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
stack_composed.run(
stat=self.STAT_KEYS[self.parameterAsEnum(parameters, self.STAT, context)],
band=self.parameterAsInt(parameters, self.BAND, context),
nodata=self.parameterAsInt(parameters, self.NODATA_INPUT, context),
output= output_file,
output_type=self.TYPES[self.parameterAsEnum(parameters, self.DATA_TYPE, context)],
num_process=self.parameterAsInt(parameters, self.NUM_PROCESS, context),
chunksize=self.parameterAsInt(parameters, self.CHUNKS, context),
images_files=images_files,
feedback=feedback)
return {self.OUTPUT: output_file}