diff --git a/fedlab/utils/dataset/functional.py b/fedlab/utils/dataset/functional.py index ccfbab95..2d008477 100644 --- a/fedlab/utils/dataset/functional.py +++ b/fedlab/utils/dataset/functional.py @@ -15,6 +15,7 @@ import numpy as np import pandas as pd import warnings +from collections import Counter def split_indices(num_cumsum, rand_perm): @@ -517,3 +518,84 @@ def random_slicing(dataset, num_clients): np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - set(dict_users[i])) return dict_users + + +def partition_report(targets, data_indices, class_num=None, verbose=True, file=None): + """Generate data partition report for clients in ``data_indices``. + + Generate data partition report for each client according to ``data_indices``, including + ratio of each class and dataset size in current client. Report can be printed in screen or into + file. The output format is comma-separated values which can be read by :func:`pandas.read_csv` + or :func:`csv.reader`. + + Args: + targets (list or numpy.ndarray): Targets for all data samples, with each element is in range of ``0`` to ``class_num-1``. + data_indices (dict): Dict of ``client_id: [data indices]``. + class_num (int, optional): Total number of classes. If set to ``None``, then ``class_num = max(targets) + 1``. + verbose (bool, optional): Whether print data partition report in screen. Default as ``True``. + file (str, optional): Output file name of data partition report. If ``None``, then no output in file. Default as ``None``. + + Returns: + pd.DataFrame + + Examples: + First generate synthetic data labels and data partition to obtain ``data_indices`` + (``{ client_id: sample indices}``): + + >>> sample_num = 15 + >>> class_num = 4 + >>> clients_num = 3 + >>> num_per_client = int(sample_num/clients_num) + >>> labels = np.random.randint(class_num, size=sample_num) # generate 15 labels, each label is 0 to 3 + >>> rand_per = np.random.permutation(sample_num) + >>> # partition synthetic data into 3 clients + >>> data_indices = {0: rand_per[0:num_per_client], + ... 1: rand_per[num_per_client:num_per_client*2], + ... 2: rand_per[num_per_client*2:num_per_client*3]} + + Check ``data_indices`` may look like: + + >>> data_indices + {0: array([8, 6, 5, 7, 2]), + 1: array([ 3, 10, 14, 4, 1]), + 2: array([13, 9, 12, 11, 0])} + + Now generate partition report for each client and each class: + + >>> partition_report(labels, data_indices, class_num=class_num, verbose=True, file=None) + Class sample statistics: + client,class0,class1,class2,class3,Amount + Client 0,0.200,0.00,0.200,0.600,5 + Client 1,0.400,0.200,0.200,0.200,5 + Client 2,0.00,0.400,0.400,0.200,5 + + """ + if not isinstance(targets, np.ndarray): + targets = np.array(targets) + + if not class_num: + class_num = max(targets) + 1 + + sorted_cid = sorted(data_indices.keys()) # sort client id in ascending order + + stats_rows = [] + for client_id in sorted_cid: + indices = data_indices[client_id] + client_targets = targets[indices] + client_sample_num = len(indices) # total number of samples of current client + client_target_cnt = Counter(client_targets) # { cls1: num1, cls2: num2, ... } + cur_client_stat = {'cid': client_id} + for cls in range(class_num): + cur_client_stat[f'class-{cls}'] = client_target_cnt[cls] if cls in client_target_cnt else 0 + cur_client_stat['TotalAmount'] = client_sample_num + stats_rows.append(cur_client_stat) + + + stats_df = pd.DataFrame(stats_rows) + if file is not None: + stats_df.to_csv(file, header=True, index=False) + if verbose: + print("Class sample statistics:") + print(stats_df) + + return stats_df diff --git a/fedlab/utils/dataset/partition.py b/fedlab/utils/dataset/partition.py index b99141bc..6b2ab67d 100644 --- a/fedlab/utils/dataset/partition.py +++ b/fedlab/utils/dataset/partition.py @@ -135,6 +135,7 @@ def __init__(self, targets, num_clients, self.client_dict = self._perform_partition() # get sample number count for each client self.client_sample_count = F.samples_num_count(self.client_dict, self.num_clients) + self.stats_report = F.partition_report(targets, self.client_dict, class_num=self.num_classes, verbose=False) def _perform_partition(self): if self.balance is None: diff --git a/fedlab/utils/functional.py b/fedlab/utils/functional.py index 0d0f3a30..16a61f7f 100644 --- a/fedlab/utils/functional.py +++ b/fedlab/utils/functional.py @@ -147,100 +147,100 @@ def get_best_gpu(): return torch.device("cuda:%d" % (best_device_index)) -def partition_report(targets, data_indices, class_num=None, verbose=True, file=None): - """Generate data partition report for clients in ``data_indices``. - - Generate data partition report for each client according to ``data_indices``, including - ratio of each class and dataset size in current client. Report can be printed in screen or into - file. The output format is comma-separated values which can be read by :func:`pandas.read_csv` - or :func:`csv.reader`. - - Args: - targets (list or numpy.ndarray): Targets for all data samples, with each element is in range of ``0`` to ``class_num-1``. - data_indices (dict): Dict of ``client_id: [data indices]``. - class_num (int, optional): Total number of classes. If set to ``None``, then ``class_num = max(targets) + 1``. - verbose (bool, optional): Whether print data partition report in screen. Default as ``True``. - file (str, optional): Output file name of data partition report. If ``None``, then no output in file. Default as ``None``. - - Examples: - First generate synthetic data labels and data partition to obtain ``data_indices`` - (``{ client_id: sample indices}``): - - >>> sample_num = 15 - >>> class_num = 4 - >>> clients_num = 3 - >>> num_per_client = int(sample_num/clients_num) - >>> labels = np.random.randint(class_num, size=sample_num) # generate 15 labels, each label is 0 to 3 - >>> rand_per = np.random.permutation(sample_num) - >>> # partition synthetic data into 3 clients - >>> data_indices = {0: rand_per[0:num_per_client], - ... 1: rand_per[num_per_client:num_per_client*2], - ... 2: rand_per[num_per_client*2:num_per_client*3]} - - Check ``data_indices`` may look like: - - >>> data_indices - {0: array([8, 6, 5, 7, 2]), - 1: array([ 3, 10, 14, 4, 1]), - 2: array([13, 9, 12, 11, 0])} - - Now generate partition report for each client and each class: - - >>> partition_report(labels, data_indices, class_num=class_num, verbose=True, file=None) - Class frequencies: - client,class0,class1,class2,class3,Amount - Client 0,0.200,0.00,0.200,0.600,5 - Client 1,0.400,0.200,0.200,0.200,5 - Client 2,0.00,0.400,0.400,0.200,5 - - """ - if not verbose and file is None: - print("No partition report generated") - return - - if not isinstance(targets, np.ndarray): - targets = np.array(targets) - - if not class_num: - class_num = max(targets) + 1 - - sorted_cid = sorted(data_indices.keys()) # sort client id in ascending order - - header_line = "Class frequencies:" - col_name = "client," + ",".join([f"class{i}" for i in range(class_num)]) + ",Amount" - - if verbose: - print(header_line) - print(col_name) - if file is not None: - reports = [header_line, col_name] - else: - reports = None - - for client_id in sorted_cid: - indices = data_indices[client_id] - client_targets = targets[indices] - client_sample_num = len(indices) # total number of samples of current client - client_target_cnt = Counter(client_targets) # { cls1: num1, cls2: num2, ... } - - report_line = ( - f"Client {client_id:3d}," - + ",".join( - [ - f"{client_target_cnt[cls] / client_sample_num:.3f}" - if cls in client_target_cnt - else "0.00" - for cls in range(class_num) - ] - ) - + f",{client_sample_num}" - ) - if verbose: - print(report_line) - if file is not None: - reports.append(report_line) - - if file is not None: - fh = open(file, "w") - fh.write("\n".join(reports)) - fh.close() +# def partition_report(targets, data_indices, class_num=None, verbose=True, file=None): +# """Generate data partition report for clients in ``data_indices``. + +# Generate data partition report for each client according to ``data_indices``, including +# ratio of each class and dataset size in current client. Report can be printed in screen or into +# file. The output format is comma-separated values which can be read by :func:`pandas.read_csv` +# or :func:`csv.reader`. + +# Args: +# targets (list or numpy.ndarray): Targets for all data samples, with each element is in range of ``0`` to ``class_num-1``. +# data_indices (dict): Dict of ``client_id: [data indices]``. +# class_num (int, optional): Total number of classes. If set to ``None``, then ``class_num = max(targets) + 1``. +# verbose (bool, optional): Whether print data partition report in screen. Default as ``True``. +# file (str, optional): Output file name of data partition report. If ``None``, then no output in file. Default as ``None``. + +# Examples: +# First generate synthetic data labels and data partition to obtain ``data_indices`` +# (``{ client_id: sample indices}``): + +# >>> sample_num = 15 +# >>> class_num = 4 +# >>> clients_num = 3 +# >>> num_per_client = int(sample_num/clients_num) +# >>> labels = np.random.randint(class_num, size=sample_num) # generate 15 labels, each label is 0 to 3 +# >>> rand_per = np.random.permutation(sample_num) +# >>> # partition synthetic data into 3 clients +# >>> data_indices = {0: rand_per[0:num_per_client], +# ... 1: rand_per[num_per_client:num_per_client*2], +# ... 2: rand_per[num_per_client*2:num_per_client*3]} + +# Check ``data_indices`` may look like: + +# >>> data_indices +# {0: array([8, 6, 5, 7, 2]), +# 1: array([ 3, 10, 14, 4, 1]), +# 2: array([13, 9, 12, 11, 0])} + +# Now generate partition report for each client and each class: + +# >>> partition_report(labels, data_indices, class_num=class_num, verbose=True, file=None) +# Class frequencies: +# client,class0,class1,class2,class3,Amount +# Client 0,0.200,0.00,0.200,0.600,5 +# Client 1,0.400,0.200,0.200,0.200,5 +# Client 2,0.00,0.400,0.400,0.200,5 + +# """ +# if not verbose and file is None: +# print("No partition report generated") +# return + +# if not isinstance(targets, np.ndarray): +# targets = np.array(targets) + +# if not class_num: +# class_num = max(targets) + 1 + +# sorted_cid = sorted(data_indices.keys()) # sort client id in ascending order + +# header_line = "Class frequencies:" +# col_name = "client," + ",".join([f"class{i}" for i in range(class_num)]) + ",Amount" + +# if verbose: +# print(header_line) +# print(col_name) +# if file is not None: +# reports = [header_line, col_name] +# else: +# reports = None + +# for client_id in sorted_cid: +# indices = data_indices[client_id] +# client_targets = targets[indices] +# client_sample_num = len(indices) # total number of samples of current client +# client_target_cnt = Counter(client_targets) # { cls1: num1, cls2: num2, ... } + +# report_line = ( +# f"Client {client_id:3d}," +# + ",".join( +# [ +# f"{client_target_cnt[cls] / client_sample_num:.3f}" +# if cls in client_target_cnt +# else "0.00" +# for cls in range(class_num) +# ] +# ) +# + f",{client_sample_num}" +# ) +# if verbose: +# print(report_line) +# if file is not None: +# reports.append(report_line) + +# if file is not None: +# fh = open(file, "w") +# fh.write("\n".join(reports)) +# fh.close()