diff --git a/docs/grig/resampling/examples.rst b/docs/grig/resampling/examples.rst index 1b0e3c2..5d877dc 100644 --- a/docs/grig/resampling/examples.rst +++ b/docs/grig/resampling/examples.rst @@ -69,7 +69,6 @@ true sine function. plt.plot(x, ytrue, '--', label='Truth') plt.legend() plt.title("Fit using wide window with distance weighting") - plt.show() Multiple data-sets @@ -129,7 +128,6 @@ coordinate mappings with all other sets. plt.axis('off') plt.imshow(good) plt.title("Reconstructed image") - plt.show() .. _edge_clipping_example: @@ -199,7 +197,6 @@ has been used to preserve detail. plt.subplot(224) plt.imshow(com_edges, cmap='copper') plt.title("'com_distance' edge mode") - plt.show() .. _adaptive_weighting_example: @@ -300,7 +297,6 @@ dimensions for a second order polynomial (requires `order` + 1). axs[1, 2].title.set_text("Adaptive Fitting Weights") fig.colorbar(wadapt_img, ax=axs[1, 2], fraction=0.046, pad=0.04, format='%.3f') - plt.show() The left-most images display the result and associated weight map using these diff --git a/docs/grig/resampling/kernel_resampler.rst b/docs/grig/resampling/kernel_resampler.rst index 57b408b..d9c25e9 100644 --- a/docs/grig/resampling/kernel_resampler.rst +++ b/docs/grig/resampling/kernel_resampler.rst @@ -145,7 +145,6 @@ with irregular coordinates. ax2.set_title('Interpolated regular kernel') ax3.imshow(edges, cmap='gray') ax3.set_title('Irregular kernel convolved with image') - plt.show() The next example shows the usage of the kernel resampler on both irregular data @@ -187,4 +186,3 @@ and an irregular kernel. color='r', label='impulses') plt.legend() plt.title('A set of impulse signals convolved with an irregular kernel.') - plt.show() diff --git a/docs/grig/toolkit/splines/spline_examples.rst b/docs/grig/toolkit/splines/spline_examples.rst index f82ec83..84c61d3 100644 --- a/docs/grig/toolkit/splines/spline_examples.rst +++ b/docs/grig/toolkit/splines/spline_examples.rst @@ -77,5 +77,3 @@ of the data where the spacing between each point is set to 1. kg = np.meshgrid(kx, ky) ky, kx = kg[0].ravel(), kg[1].ravel() axis.plot(kx, ky, '.', color='r', markersize=4 / (i + 1)) - - plt.show()