From 7bf6dcbaf86c0041bb0a3853a6cd8507644589d5 Mon Sep 17 00:00:00 2001 From: BBC-Esq Date: Sun, 3 Nov 2024 14:06:52 -0500 Subject: [PATCH] Update audio.py try appease black 2 --- faster_whisper/audio.py | 256 ++++++++++++++++++++-------------------- 1 file changed, 125 insertions(+), 131 deletions(-) diff --git a/faster_whisper/audio.py b/faster_whisper/audio.py index 7d039b26..4c3cebcb 100644 --- a/faster_whisper/audio.py +++ b/faster_whisper/audio.py @@ -17,150 +17,144 @@ def is_ffmpeg_available() -> bool: - try: - subprocess.check_output(["ffmpeg", "-version"]) - return True - except (subprocess.SubprocessError, FileNotFoundError): - return False - - -def decode_audio_ffmpeg( - input_file: Union[str, BinaryIO], - sampling_rate: int = 16000, - split_stereo: bool = False, -): - with tempfile.TemporaryDirectory() as tmpdir: - output_file = f"{tmpdir}/temp.wav" - channels = 2 if split_stereo else 1 - - cmd = [ - "ffmpeg", - "-i", - str(input_file), - "-ar", - str(sampling_rate), - "-ac", - str(channels), - "-acodec", - "pcm_s16le", - output_file, - "-y", - ] - - try: - subprocess.check_call(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) - audio = np.fromfile(output_file, dtype=np.int16) - audio = audio.astype(np.float32) / 32768.0 - - if split_stereo: - left_channel = audio[0::2] - right_channel = audio[1::2] - return torch.from_numpy(left_channel), torch.from_numpy(right_channel) - return torch.from_numpy(audio) - - except subprocess.SubprocessError: - raise RuntimeError("FFmpeg failed to decode the audio file") + try: + subprocess.check_output(["ffmpeg", "-version"]) + return True + except (subprocess.SubprocessError, FileNotFoundError): + return False + + +def decode_audio_ffmpeg(input_file: Union[str, BinaryIO], sampling_rate: int = 16000, split_stereo: bool = False): + with tempfile.TemporaryDirectory() as tmpdir: + output_file = f"{tmpdir}/temp.wav" + channels = 2 if split_stereo else 1 + + cmd = [ + "ffmpeg", + "-i", + str(input_file), + "-ar", + str(sampling_rate), + "-ac", + str(channels), + "-acodec", + "pcm_s16le", + output_file, + "-y", + ] + + try: + subprocess.check_call(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) + audio = np.fromfile(output_file, dtype=np.int16) + audio = audio.astype(np.float32) / 32768.0 + + if split_stereo: + left_channel = audio[0::2] + right_channel = audio[1::2] + return torch.from_numpy(left_channel), torch.from_numpy(right_channel) + return torch.from_numpy(audio) + + except subprocess.SubprocessError: + raise RuntimeError("FFmpeg failed to decode the audio file") def decode_audio( - input_file: Union[str, BinaryIO], - sampling_rate: int = 16000, - split_stereo: bool = False, + input_file: Union[str, BinaryIO], sampling_rate: int = 16000, split_stereo: bool = False ): - """Decodes the audio. - - Args: - input_file: Path to the input file or a file-like object. - sampling_rate: Resample the audio to this sample rate. - split_stereo: Return separate left and right channels. - - Returns: - A float32 Numpy array. - If `split_stereo` is enabled, the function returns a 2-tuple with the - separated left and right channels. - """ - if is_ffmpeg_available(): - try: - return decode_audio_ffmpeg(input_file, sampling_rate, split_stereo) - except (subprocess.SubprocessError, RuntimeError): - pass - - resampler = av.audio.resampler.AudioResampler( - format="s16", - layout="mono" if not split_stereo else "stereo", - rate=sampling_rate, - ) - - raw_buffer = io.BytesIO() - dtype = None - - with av.open(input_file, mode="r", metadata_errors="ignore") as container: - frames = container.decode(audio=0) - frames = ignore_invalid_frames(frames) - frames = group_frames(frames, 500000) - frames = resample_frames(frames, resampler) - for frame in frames: - array = frame.to_ndarray() - dtype = array.dtype - raw_buffer.write(array) - - # It appears that some objects related to the resampler are not freed - # unless the garbage collector is manually run. - # https://github.com/SYSTRAN/faster-whisper/issues/390 - # note that this slows down loading the audio a little bit - # if that is a concern, please use ffmpeg directly as in here: - # https://github.com/openai/whisper/blob/25639fc/whisper/audio.py#L25-L62 - del resampler - gc.collect() - - audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype) - # Convert s16 back to f32. - audio = audio.astype(np.float32) / 32768.0 - - if split_stereo: - left_channel = audio[0::2] - right_channel = audio[1::2] - return torch.from_numpy(left_channel), torch.from_numpy(right_channel) - return torch.from_numpy(audio) + """Decodes the audio. + + Args: + input_file: Path to the input file or a file-like object. + sampling_rate: Resample the audio to this sample rate. + split_stereo: Return separate left and right channels. + + Returns: + A float32 Numpy array. + If `split_stereo` is enabled, the function returns a 2-tuple with the + separated left and right channels. + """ + if is_ffmpeg_available(): + try: + return decode_audio_ffmpeg(input_file, sampling_rate, split_stereo) + except (subprocess.SubprocessError, RuntimeError): + pass + + resampler = av.audio.resampler.AudioResampler( + format="s16", + layout="mono" if not split_stereo else "stereo", + rate=sampling_rate, + ) + + raw_buffer = io.BytesIO() + dtype = None + + with av.open(input_file, mode="r", metadata_errors="ignore") as container: + frames = container.decode(audio=0) + frames = ignore_invalid_frames(frames) + frames = group_frames(frames, 500000) + frames = resample_frames(frames, resampler) + for frame in frames: + array = frame.to_ndarray() + dtype = array.dtype + raw_buffer.write(array) + + # It appears that some objects related to the resampler are not freed + # unless the garbage collector is manually run. + # https://github.com/SYSTRAN/faster-whisper/issues/390 + # note that this slows down loading the audio a little bit + # if that is a concern, please use ffmpeg directly as in here: + # https://github.com/openai/whisper/blob/25639fc/whisper/audio.py#L25-L62 + del resampler + gc.collect() + + audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype) + # Convert s16 back to f32. + audio = audio.astype(np.float32) / 32768.0 + + if split_stereo: + left_channel = audio[0::2] + right_channel = audio[1::2] + return torch.from_numpy(left_channel), torch.from_numpy(right_channel) + return torch.from_numpy(audio) def ignore_invalid_frames(frames): - iterator = iter(frames) - while True: - try: - yield next(iterator) - except StopIteration: - break - except av.error.InvalidDataError: - continue + iterator = iter(frames) + while True: + try: + yield next(iterator) + except StopIteration: + break + except av.error.InvalidDataError: + continue def group_frames(frames, num_samples=None): - fifo = av.audio.fifo.AudioFifo() - for frame in frames: - frame.pts = None # Ignore timestamp check. - fifo.write(frame) - if num_samples is not None and fifo.samples >= num_samples: - yield fifo.read() - if fifo.samples > 0: - yield fifo.read() + fifo = av.audio.fifo.AudioFifo() + for frame in frames: + frame.pts = None # Ignore timestamp check. + fifo.write(frame) + if num_samples is not None and fifo.samples >= num_samples: + yield fifo.read() + if fifo.samples > 0: + yield fifo.read() def resample_frames(frames, resampler): - # Add None to flush the resampler. - for frame in itertools.chain(frames, [None]): - yield from resampler.resample(frame) + # Add None to flush the resampler. + for frame in itertools.chain(frames, [None]): + yield from resampler.resample(frame) def pad_or_trim(array, length: int = 3000, *, axis: int = -1): - """Pad or trim the Mel features array to 3000, as expected by the encoder.""" - axis = axis % array.ndim - if array.shape[axis] > length: - idx = [Ellipsis] * axis + [slice(length)] + [Ellipsis] * (array.ndim - axis - 1) - return array[idx] - - if array.shape[axis] < length: - pad_widths = ([0] * array.ndim * 2) - pad_widths[2 * axis] = length - array.shape[axis] - array = torch.nn.functional.pad(array, tuple(pad_widths[::-1])) - return array + """Pad or trim the Mel features array to 3000, as expected by the encoder.""" + axis = axis % array.ndim + if array.shape[axis] > length: + idx = [Ellipsis] * axis + [slice(length)] + [Ellipsis] * (array.ndim - axis - 1) + return array[idx] + + if array.shape[axis] < length: + pad_widths = [0] * array.ndim * 2 + pad_widths[2 * axis] = length - array.shape[axis] + array = torch.nn.functional.pad(array, tuple(pad_widths[::-1])) + return array