-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtask_three.py
102 lines (84 loc) · 3.03 KB
/
task_three.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# encoding:utf8
# https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.community.centrality.girvan_newman.html
import pickle
import sys
import itertools
import networkx as nx
import matplotlib.pyplot as plt
# 解决 UnicodeDecodeError: 'ascii' codec can't decode byte 0xe8 in position
if sys.getdefaultencoding() != 'utf-8':
reload(sys)
sys.setdefaultencoding('utf-8')
def show(tuple_list = ([])):
for item_list in tuple_list:
print "[",
for item in item_list:
print item,
print ",",
print "],"
print "\n"
def task_three(dbh, Graph_pickle):
# 读取taks_one生成的有向权图
f = open(Graph_pickle, 'r')
D = pickle.load(f)
f.close()
# 是否要去权重?
for u,v,d in D.edges(data=True):
D[u][v]['weight'] = 1
plt.figure(1)
nx.draw(D, node_color='b', edge_color="r",
with_labels=True, font_size=8, node_size=30)
plt.show()
for node in D.nodes():
print node + ", ",
#D = nx.path_graph(10)
#print len(D.nodes())
# D=nx.Graph()
# D.add_edge(1,3)
# D[1][3]['weight'] = 13
# D.add_edge(1,4)
# D[1][4]['weight'] = 150
# D.add_edge(1,2)
# D[1][2]['weight'] = 20
# D.add_edge(2,3)
# D[2][3]['weight'] =168
# D.add_edge(2,4)
# D[2][4]['weight'] =58
# D.add_edge(3,4)
# D[3][4]['weight'] =79
k = 30
# 这个函数源码
# https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.community.centrality.girvan_newman.html
# 既然要量化我们需要在源码中定位计算的相关变量然后给出来
comp = nx.algorithms.community.centrality.girvan_newman(D)
for communities in itertools.islice(comp,k):
show(tuple(sorted(c) for c in communities))
# 这里可以绘制一个层次聚类图 类似http://blog.sciencenet.cn/blog-563898-750516.html
def task_three_with_third_party(dbh,Graph_pickle=''):
# 读取taks_one生成的有向权图
f = open(Graph_pickle, 'r')
D = pickle.load(f)
f.close()
# 建立字符school nodes 和数字的映射关系
mapped = {}
remapped = {}
number = 0
for node in D.nodes():
number += 1
mapped[node] = number
remapped[number] = node
# 将有向权图按照cmty.py 指定的格式生成至Girvan-Newman文件夹里面
f = open(".\\Girvan-Newman\\graph_me.txt",'w')
for u, v, d in D.edges(data=True):
w = d['weight']
f.write(str(mapped[u])+","+str(mapped[v])+","+str(w)+"\n")
f.close()
# 保存反映射关系
f = open(".\\Girvan-Newman\\remapped.pickle", 'w')
pickle.dump(remapped, f, 0)
f.close()
if __name__=='__main__':
# 下面二种方法区别在于第一个是GN原始算法,第二个引入了Modularity Q
# 参考http://blog.sciencenet.cn/blog-563898-750516.html
task_three('',Graph_pickle = ".\\task_three_results\\preprocess.pickle")
# task_three_with_third_party('',Graph_pickle = "task_one_D.pickle")