forked from sahagobinda/GPM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_cifar_superclass.py
488 lines (435 loc) · 18.8 KB
/
main_cifar_superclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
from torchvision import datasets, transforms
import os
import os.path
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sn
import pandas as pd
import random
import pdb
import argparse,time
import math
from copy import deepcopy
## Define LeNet model
def compute_conv_output_size(Lin,kernel_size,stride=1,padding=0,dilation=1):
return int(np.floor((Lin+2*padding-dilation*(kernel_size-1)-1)/float(stride)+1))
class LeNet(nn.Module):
def __init__(self,taskcla):
super(LeNet, self).__init__()
self.act=OrderedDict()
self.map =[]
self.ksize=[]
self.in_channel =[]
self.map.append(32)
self.conv1 = nn.Conv2d(3, 20, 5, bias=False, padding=2)
s=compute_conv_output_size(32,5,1,2)
s=compute_conv_output_size(s,3,2,1)
self.ksize.append(5)
self.in_channel.append(3)
self.map.append(s)
self.conv2 = nn.Conv2d(20, 50, 5, bias=False, padding=2)
s=compute_conv_output_size(s,5,1,2)
s=compute_conv_output_size(s,3,2,1)
self.ksize.append(5)
self.in_channel.append(20)
self.smid=s
self.map.append(50*self.smid*self.smid)
self.maxpool=torch.nn.MaxPool2d(3,2,padding=1)
self.relu=torch.nn.ReLU()
self.drop1=torch.nn.Dropout(0)
self.drop2=torch.nn.Dropout(0)
self.lrn = torch.nn.LocalResponseNorm(4,0.001/9.0,0.75,1)
self.fc1 = nn.Linear(50*self.smid*self.smid,800, bias=False)
self.fc2 = nn.Linear(800,500, bias=False)
self.map.extend([800])
self.taskcla = taskcla
self.fc3=torch.nn.ModuleList()
for t,n in self.taskcla:
self.fc3.append(torch.nn.Linear(500,n,bias=False))
def forward(self, x):
bsz = deepcopy(x.size(0))
self.act['conv1']=x
x = self.conv1(x)
x = self.maxpool(self.drop1(self.lrn(self.relu(x))))
self.act['conv2']=x
x = self.conv2(x)
x = self.maxpool(self.drop1(self.lrn (self.relu(x))))
x=x.reshape(bsz,-1)
self.act['fc1']=x
x = self.fc1(x)
x = self.drop2(self.relu(x))
self.act['fc2']=x
x = self.fc2(x)
x = self.drop2(self.relu(x))
y=[]
for t,i in self.taskcla:
y.append(self.fc3[t](x))
return y
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
# torch.nn.init.xavier_uniform(m.weight)
torch.nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='relu')
def get_model(model):
return deepcopy(model.state_dict())
def set_model_(model,state_dict):
model.load_state_dict(deepcopy(state_dict))
return
def adjust_learning_rate(optimizer, epoch, args):
for param_group in optimizer.param_groups:
if (epoch ==1):
param_group['lr']=args.lr
else:
param_group['lr'] /= args.lr_factor
def train(args, model, device, x,y, optimizer,criterion, task_id):
model.train()
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
# Loop batches
for i in range(0,len(r),args.batch_size_train):
if i+args.batch_size_train<=len(r): b=r[i:i+args.batch_size_train]
else: b=r[i:]
data = x[b]
data, target = data.to(device), y[b].to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output[task_id], target)
loss.backward()
optimizer.step()
def train_projected(args,model,device,x,y,optimizer,criterion,feature_mat,task_id):
model.train()
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
# Loop batches
for i in range(0,len(r),args.batch_size_train):
if i+args.batch_size_train<=len(r): b=r[i:i+args.batch_size_train]
else: b=r[i:]
data = x[b]
data, target = data.to(device), y[b].to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output[task_id], target)
loss.backward()
# Gradient Projections
kk = 0
for k, (m,params) in enumerate(model.named_parameters()):
if k<4 and len(params.size())!=1:
sz = params.grad.data.size(0)
params.grad.data = params.grad.data - torch.mm(params.grad.data.view(sz,-1),\
feature_mat[kk]).view(params.size())
kk +=1
elif (k<4 and len(params.size())==1) and task_id !=0 :
params.grad.data.fill_(0)
optimizer.step()
def test(args, model, device, x, y, criterion, task_id):
model.eval()
total_loss = 0
total_num = 0
correct = 0
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
with torch.no_grad():
# Loop batches
for i in range(0,len(r),args.batch_size_test):
if i+args.batch_size_test<=len(r): b=r[i:i+args.batch_size_test]
else: b=r[i:]
data = x[b]
data, target = data.to(device), y[b].to(device)
output = model(data)
loss = criterion(output[task_id], target)
pred = output[task_id].argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss += loss.data.cpu().numpy().item()*len(b)
total_num += len(b)
acc = 100. * correct / total_num
final_loss = total_loss / total_num
return final_loss, acc
def get_representation_matrix (net, device, x, y=None):
# Collect activations by forward pass
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
b=r[0:125] # Take 125 random samples
example_data = x[b]
example_data = example_data.to(device)
example_out = net(example_data)
batch_list=[2*12,100,125,125]
pad = 2
p1d = (2, 2, 2, 2)
mat_list=[]
act_key=list(net.act.keys())
# pdb.set_trace()
for i in range(len(net.map)):
bsz=batch_list[i]
k=0
if i<2:
ksz= net.ksize[i]
s=compute_conv_output_size(net.map[i],net.ksize[i],1,pad)
mat = np.zeros((net.ksize[i]*net.ksize[i]*net.in_channel[i],s*s*bsz))
act = F.pad(net.act[act_key[i]], p1d, "constant", 0).detach().cpu().numpy()
for kk in range(bsz):
for ii in range(s):
for jj in range(s):
mat[:,k]=act[kk,:,ii:ksz+ii,jj:ksz+jj].reshape(-1) #?
k +=1
mat_list.append(mat)
else:
act = net.act[act_key[i]].detach().cpu().numpy()
activation = act[0:bsz].transpose()
mat_list.append(activation)
print('-'*30)
print('Representation Matrix')
print('-'*30)
for i in range(len(mat_list)):
print ('Layer {} : {}'.format(i+1,mat_list[i].shape))
print('-'*30)
return mat_list
def update_GPM (model, mat_list, threshold, feature_list=[]):
print ('Threshold: ', threshold)
if not feature_list:
# After First Task
for i in range(len(mat_list)):
activation = mat_list[i]
U,S,Vh = np.linalg.svd(activation, full_matrices=False)
# criteria (Eq-5)
sval_total = (S**2).sum()
sval_ratio = (S**2)/sval_total
r = np.sum(np.cumsum(sval_ratio)<threshold[i]) #+1
feature_list.append(U[:,0:r])
else:
for i in range(len(mat_list)):
activation = mat_list[i]
U1,S1,Vh1=np.linalg.svd(activation, full_matrices=False)
sval_total = (S1**2).sum()
# Projected Representation (Eq-8)
act_hat = activation - np.dot(np.dot(feature_list[i],feature_list[i].transpose()),activation)
U,S,Vh = np.linalg.svd(act_hat, full_matrices=False)
# criteria (Eq-9)
sval_hat = (S**2).sum()
sval_ratio = (S**2)/sval_total
accumulated_sval = (sval_total-sval_hat)/sval_total
r = 0
for ii in range (sval_ratio.shape[0]):
if accumulated_sval < threshold[i]:
accumulated_sval += sval_ratio[ii]
r += 1
else:
break
if r == 0:
print ('Skip Updating GPM for layer: {}'.format(i+1))
continue
# update GPM
Ui=np.hstack((feature_list[i],U[:,0:r]))
if Ui.shape[1] > Ui.shape[0] :
feature_list[i]=Ui[:,0:Ui.shape[0]]
else:
feature_list[i]=Ui
print('-'*40)
print('Gradient Constraints Summary')
print('-'*40)
for i in range(len(feature_list)):
print ('Layer {} : {}/{}'.format(i+1,feature_list[i].shape[1], feature_list[i].shape[0]))
print('-'*40)
return feature_list
def main(args):
tstart=time.time()
## Device Setting
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Choose any task order - ref {yoon et al. ICLR 2020}
task_order = [np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
np.array([15, 12, 5, 9, 7, 16, 18, 17, 1, 0, 3, 8, 11, 14, 10, 6, 2, 4, 13, 19]),
np.array([17, 1, 19, 18, 12, 7, 6, 0, 11, 15, 10, 5, 13, 3, 9, 16, 4, 14, 2, 8]),
np.array([11, 9, 6, 5, 12, 4, 0, 10, 13, 7, 14, 3, 15, 16, 8, 1, 2, 19, 18, 17]),
np.array([6, 14, 0, 11, 12, 17, 13, 4, 9, 1, 7, 19, 8, 10, 3, 15, 18, 5, 2, 16])]
## Load CIFAR100_SUPERCLASS DATASET
from dataloader import cifar100_superclass as data_loader
data, taskcla = data_loader.cifar100_superclass_python(task_order[args.t_order], group=5, validation=True)
test_data,_ = data_loader.cifar100_superclass_python(task_order[args.t_order], group=5)
print (taskcla)
acc_matrix=np.zeros((20,20))
criterion = torch.nn.CrossEntropyLoss()
task_id = 0
for k,ncla in taskcla:
# specify threshold hyperparameter
threshold = np.array([0.98] * 5) + task_id*np.array([0.001] * 5)
print('*'*100)
print('Task {:2d} ({:s})'.format(k,data[k]['name']))
print('*'*100)
xtrain=data[k]['train']['x']
ytrain=data[k]['train']['y']
xvalid=data[k]['valid']['x']
yvalid=data[k]['valid']['y']
xtest =test_data[k]['test']['x']
ytest =test_data[k]['test']['y']
lr = args.lr
best_loss=np.inf
print ('-'*40)
print ('Task ID :{} | Learning Rate : {}'.format(task_id, lr))
print ('-'*40)
if task_id==0:
model = LeNet(taskcla).to(device)
print ('Model parameters ---')
for k_t, (m, param) in enumerate(model.named_parameters()):
print (k_t,m,param.shape)
print ('-'*40)
# Initialize model
model.apply(init_weights)
best_model=get_model(model)
feature_list =[]
optimizer = optim.SGD(model.parameters(), lr=lr)
for epoch in range(1, args.n_epochs+1):
# Train
clock0=time.time()
train(args, model, device, xtrain, ytrain, optimizer, criterion, k)
clock1=time.time()
tr_loss,tr_acc = test(args, model, device, xtrain, ytrain, criterion, k)
print('Epoch {:3d} | Train: loss={:.3f}, acc={:5.1f}% | time={:5.1f}ms |'.format(epoch,\
tr_loss,tr_acc, 1000*(clock1-clock0)),end='')
# Validate
valid_loss,valid_acc = test(args, model, device, xvalid, yvalid, criterion, k)
print(' Valid: loss={:.3f}, acc={:5.1f}% |'.format(valid_loss, valid_acc),end='')
# Adapt lr
if valid_loss<best_loss:
best_loss=valid_loss
best_model=get_model(model)
patience=args.lr_patience
print(' *',end='')
else:
patience-=1
if patience<=0:
lr/=args.lr_factor
print(' lr={:.1e}'.format(lr),end='')
if lr<args.lr_min:
print()
break
patience=args.lr_patience
adjust_learning_rate(optimizer, epoch, args)
print()
set_model_(model,best_model)
# Test
print ('-'*40)
test_loss, test_acc = test(args, model, device, xtest, ytest, criterion, k)
print('Test: loss={:.3f} , acc={:5.1f}%'.format(test_loss,test_acc))
# Memory Update
mat_list = get_representation_matrix (model, device, xtrain, ytrain)
feature_list = update_GPM (model, mat_list, threshold, feature_list)
else:
optimizer = optim.SGD(model.parameters(), lr=args.lr)
feature_mat = []
# Projection Matrix Precomputation
for i in range(len(model.act)):
Uf=torch.Tensor(np.dot(feature_list[i],feature_list[i].transpose())).to(device)
print('Layer {} - Projection Matrix shape: {}'.format(i+1,Uf.shape))
feature_mat.append(Uf)
print ('-'*40)
for epoch in range(1, args.n_epochs+1):
# Train
clock0=time.time()
train_projected(args, model,device,xtrain, ytrain,optimizer,criterion,feature_mat,k)
clock1=time.time()
tr_loss, tr_acc = test(args, model, device, xtrain, ytrain,criterion,k)
print('Epoch {:3d} | Train: loss={:.3f}, acc={:5.1f}% | time={:5.1f}ms |'.format(epoch,\
tr_loss, tr_acc, 1000*(clock1-clock0)),end='')
# Validate
valid_loss,valid_acc = test(args, model, device, xvalid, yvalid, criterion,k)
print(' Valid: loss={:.3f}, acc={:5.1f}% |'.format(valid_loss, valid_acc),end='')
# Adapt lr
if valid_loss<best_loss:
best_loss=valid_loss
best_model=get_model(model)
patience=args.lr_patience
print(' *',end='')
else:
patience-=1
if patience<=0:
lr/=args.lr_factor
print(' lr={:.1e}'.format(lr),end='')
if lr<args.lr_min:
print()
break
patience=args.lr_patience
adjust_learning_rate(optimizer, epoch, args)
print()
set_model_(model,best_model)
# Test
test_loss, test_acc = test(args, model, device, xtest, ytest, criterion,k)
print('Test: loss={:.3f} , acc={:5.1f}%'.format(test_loss,test_acc))
# Memory Update
mat_list = get_representation_matrix (model, device, xtrain, ytrain)
feature_list = update_GPM (model, mat_list, threshold, feature_list)
# save accuracy
jj = 0
for ii in task_order[args.t_order][0:task_id+1]:
xtest =test_data[ii]['test']['x']
ytest =test_data[ii]['test']['y']
_, acc_matrix[task_id,jj] = test(args, model, device, xtest, ytest,criterion,ii)
jj +=1
print('Accuracies =')
for i_a in range(task_id+1):
print('\t',end='')
for j_a in range(acc_matrix.shape[1]):
print('{:5.1f}% '.format(acc_matrix[i_a,j_a]),end='')
print()
# update task id
task_id +=1
print('-'*50)
# Simulation Results
print ('Task Order : {}'.format(task_order[args.t_order]))
print ('Final Avg Accuracy: {:5.2f}%'.format(acc_matrix[-1].mean()))
bwt=np.mean((acc_matrix[-1]-np.diag(acc_matrix))[:-1])
print ('Backward transfer: {:5.2f}%'.format(bwt))
print('[Elapsed time = {:.1f} ms]'.format((time.time()-tstart)*1000))
print('-'*50)
# Plots
array = acc_matrix
df_cm = pd.DataFrame(array, index = [i for i in ["1","2","3","4","5","6","7",\
"8","9","10","11","12","13","14","15","16","17","18","19","20"]],
columns = [i for i in ["1","2","3","4","5","6","7",\
"8","9","10","11","12","13","14","15","16","17","18","19","20"]])
sn.set(font_scale=1.4)
sn.heatmap(df_cm, annot=True, annot_kws={"size": 10})
plt.show()
if __name__ == "__main__":
# Training parameters
parser = argparse.ArgumentParser(description='Sequential PMNIST with GPM')
parser.add_argument('--batch_size_train', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--batch_size_test', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--n_epochs', type=int, default=50, metavar='N',
help='number of training epochs/task (default: 200)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--pc_valid',default=0.05,type=float,
help='fraction of training data used for validation')
parser.add_argument('--t_order', type=int, default=0, metavar='TOD',
help='random seed (default: 0)')
# Optimizer parameters
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--lr_min', type=float, default=1e-5, metavar='LRM',
help='minimum lr rate (default: 1e-5)')
parser.add_argument('--lr_patience', type=int, default=6, metavar='LRP',
help='hold before decaying lr (default: 6)')
parser.add_argument('--lr_factor', type=int, default=2, metavar='LRF',
help='lr decay factor (default: 2)')
args = parser.parse_args()
print('='*100)
print('Arguments =')
for arg in vars(args):
print('\t'+arg+':',getattr(args,arg))
print('='*100)
main(args)