-
Notifications
You must be signed in to change notification settings - Fork 0
/
tree03.cpp
96 lines (89 loc) · 2.6 KB
/
tree03.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
//
// Created by 陈中超 on 2024/3/31.
//
/* Deleting a node from Binary search tree 删除节点 */
#include<iostream>
using namespace std;
struct Node {
int data;
struct Node *left;
struct Node *right;
};
//Function to find minimum in a tree.
Node* FindMin(Node* root)
{
while(root->left != NULL) root = root->left;
return root;
}
// Function to search a delete a value from tree.
struct Node* Delete(struct Node *root, int data) {
if(root == NULL) return root;
else if(data < root->data) root->left = Delete(root->left,data);
else if (data > root->data) root->right = Delete(root->right,data);
// Wohoo... I found you, Get ready to be deleted
else {
// Case 1: No child
if(root->left == NULL && root->right == NULL) {
delete root;
root = NULL;
}
//Case 2: One child
else if(root->left == NULL) {
struct Node *temp = root;
root = root->right;
delete temp;
}
else if(root->right == NULL) {
struct Node *temp = root;
root = root->left;
delete temp;
}
// case 3: 2 children
else {
struct Node *temp = FindMin(root->right);
root->data = temp->data;
root->right = Delete(root->right,temp->data);
}
}
return root;
}
//Function to visit nodes in Inorder
void Inorder(Node *root) {
if(root == NULL) return;
Inorder(root->left); //Visit left subtree
printf("%d ",root->data); //Print data
Inorder(root->right); // Visit right subtree
}
// Function to Insert Node in a Binary Search Tree
Node* Insert(Node *root,char data) {
if(root == NULL) {
root = new Node();
root->data = data;
root->left = root->right = NULL;
}
else if(data <= root->data)
root->left = Insert(root->left,data);
else
root->right = Insert(root->right,data);
return root;
}
int main() {
/*Code To Test the logic
Creating an example tree
5
/ \
3 10
/ \ \
1 4 11
*/
Node* root = NULL;
root = Insert(root,5); root = Insert(root,10);
root = Insert(root,3); root = Insert(root,4);
root = Insert(root,1); root = Insert(root,11);
// Deleting node with value 5, change this value to test other cases
root = Delete(root,5);
//Print Nodes in Inorder
cout<<"Inorder: ";
Inorder(root);
cout<<"\n";
}