Skip to content

Latest commit

 

History

History
48 lines (32 loc) · 1.67 KB

README.md

File metadata and controls

48 lines (32 loc) · 1.67 KB

SwissDINO

Official implementation of our work SwissDINO, published in IROS2024. In this paper, we present a one-shot personal object search method based on the recent DINOv2 transformer model. Swiss DINO handles challenging on-device personalized scene understanding requirements and does not require any adaptation training.

image

Install requirements

Install conda environment with

$ conda env create -f swiss_dino_env.yml

Download datasets

We use two datasets for evaluation of the method: PerSeg (https://github.com/ZrrSkywalker/Personalize-SAM#preparation) and ICubWorld (https://robotology.github.io/iCubWorld/#icubworld-transformations-modal).

Download and extract a chosen dataset, and set $DATA_DIR to the root dataset path.

Run evaluation

To run evaluation on PerSeg dataset:

python swiss_dino_evaluation.py --dataset_name perseg --data_dir $DATA_DIR --fe_model_type vit_s --verbose

To run evaluation on ICubWorld dataset:

python swiss_dino_evaluation.py --dataset_name icubworld --data_dir $DATA_DIR --fe_model_type vit_s --verbose

The evaluation script generates log.txt file with per-class metrics.

Run inference

The inference is not supported yet.

Cite us

If you use this repository, please cite our work

   @article{paramonov2024swiss,
    title={Swiss DINO: Efficient and Versatile Vision Framework for On-device Personal Object Search},
    author={Paramonov, Kirill and Zhong, Jia-Xing and Michieli, Umberto and Moon, Jijoong and Ozay, Mete},
    journal={IROS},
    year={2024}
    }