-
Notifications
You must be signed in to change notification settings - Fork 1
/
transformer.py
391 lines (327 loc) · 14.2 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from typing import Optional, Any, Union, Callable
import torch
from torch import Tensor
from torch.nn import functional as F
from torch.nn.modules.normalization import LayerNorm
from .attention import MaestroMultiheadAttention
from .linear import MaestroLinear
from ..samplers import BaseSampler
__all__ = ['MaestroTransformer', 'MaestroTransformerEncoder',
'MaestroTransformerDecoder', 'MaestroTransformerEncoderLayer',
'MaestroTransformerDecoderLayer']
class MaestroTransformer(torch.nn.Transformer):
def __init__(self, d_model: int = 512, nhead: int = 8,
num_encoder_layers: int = 6,
num_decoder_layers: int = 6, dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
custom_encoder: Optional[Any] = None,
custom_decoder: Optional[Any] = None,
layer_norm_eps: float = 1e-5,
batch_first: bool = False, norm_first: bool = False) -> None:
if custom_encoder is None:
encoder_layer = MaestroTransformerEncoderLayer(
d_model, nhead, dim_feedforward, dropout,
activation, layer_norm_eps, batch_first, norm_first)
encoder_norm = LayerNorm(
d_model, eps=layer_norm_eps)
custom_encoder = MaestroTransformerEncoder(
encoder_layer, num_encoder_layers, encoder_norm)
if custom_decoder is None:
decoder_layer = MaestroTransformerDecoderLayer(
d_model, nhead, dim_feedforward, dropout,
activation, layer_norm_eps, batch_first, norm_first)
decoder_norm = LayerNorm(
d_model, eps=layer_norm_eps)
custom_decoder = MaestroTransformerDecoder(
decoder_layer, num_decoder_layers, decoder_norm)
super().__init__(
d_model, nhead, num_encoder_layers, num_decoder_layers,
dim_feedforward, dropout, activation, custom_encoder,
custom_decoder, layer_norm_eps, batch_first, norm_first)
def forward(self, src: Tensor, tgt: Tensor,
src_mask: Optional[Tensor] = None,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
is_batched = src.dim() == 3
if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
raise RuntimeError("the batch number of src and tgt must be equal")
elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
raise RuntimeError("the batch number of src and tgt must be equal")
if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
raise RuntimeError(
"the feature number of src and tgt must be equal to d_model")
memory = self.encoder(
src, mask=src_mask, src_key_padding_mask=src_key_padding_mask,
sampler=sampler)
output = self.decoder(
tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
sampler=sampler)
return output
class MaestroTransformerEncoder(torch.nn.TransformerEncoder):
def __init__(self, encoder_layer, num_layers, norm=None,
enable_nested_tensor=True, mask_check=True):
super().__init__(encoder_layer, num_layers, norm,
enable_nested_tensor, mask_check)
def forward(
self,
src: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
is_causal: Optional[bool] = None,
sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
src_key_padding_mask = F._canonical_mask(
mask=src_key_padding_mask,
mask_name="src_key_padding_mask",
other_type=F._none_or_dtype(mask),
other_name="mask",
target_type=src.dtype
)
mask = F._canonical_mask(
mask=mask,
mask_name="mask",
other_type=None,
other_name="",
target_type=src.dtype,
check_other=False,
)
output = src
# Prevent type refinement
make_causal = (is_causal is True)
if is_causal is None:
if mask is not None:
sz = mask.size(0)
causal_comparison = torch.triu(
torch.ones(sz, sz, device=mask.device) * float('-inf'),
diagonal=1).to(mask.dtype)
if torch.equal(mask, causal_comparison):
make_causal = True
is_causal = make_causal
for mod in self.layers:
output = mod(
output, src_mask=mask, is_causal=is_causal,
src_key_padding_mask=src_key_padding_mask,
sampler=sampler)
if self.norm is not None:
output = self.norm(output)
return output
class MaestroTransformerDecoder(torch.nn.TransformerDecoder):
def __init__(self, decoder_layer, num_layers, norm=None):
super().__init__(decoder_layer, num_layers, norm)
def forward(self, tgt: Tensor, memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
output = tgt
for mod in self.layers:
output = mod(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
sampler=sampler)
if self.norm is not None:
output = self.norm(output)
return output
class MaestroTransformerEncoderLayer(torch.nn.TransformerEncoderLayer):
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5, batch_first: bool = False,
norm_first: bool = False,
device=None, dtype=None) -> None:
super().__init__(
d_model, nhead, dim_feedforward, dropout, activation,
layer_norm_eps, batch_first, norm_first, device, dtype)
self.self_attn = MaestroMultiheadAttention(
d_model, nhead, dropout=dropout, batch_first=batch_first)
# Implementation of Feedforward model
self.linear1 = MaestroLinear(d_model, dim_feedforward)
self.linear2 = MaestroLinear(dim_feedforward, d_model)
def forward(
self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
is_causal: bool = False,
sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
src_key_padding_mask = F._canonical_mask(
mask=src_key_padding_mask,
mask_name="src_key_padding_mask",
other_type=F._none_or_dtype(src_mask),
other_name="src_mask",
target_type=src.dtype
)
src_mask = F._canonical_mask(
mask=src_mask,
mask_name="src_mask",
other_type=None,
other_name="",
target_type=src.dtype,
check_other=False,
)
x = src
if self.norm_first:
x = x + self._sa_block(
self.norm1(x), src_mask,
src_key_padding_mask, is_causal=is_causal,
sampler=sampler)
x = x + self._ff_block(self.norm2(x),
sampler=sampler)
else:
x = self.norm1(x + self._sa_block(
x, src_mask,
src_key_padding_mask, is_causal=is_causal,
sampler=sampler))
x = self.norm2(x + self._ff_block(
x, sampler=sampler))
return x
def _sa_block(self, x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
is_causal: bool = False,
sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
x = self.self_attn(x, x, x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False, is_causal=is_causal,
sampler=sampler)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: Tensor, sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
x = self.linear2(
self.dropout(self.activation(
self.linear1(x, p=sampler()))),
p=sampler())
return self.dropout2(x)
class MaestroTransformerDecoderLayer(torch.nn.TransformerDecoderLayer):
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5, batch_first: bool = False,
norm_first: bool = False,
device=None, dtype=None) -> None:
super().__init__(
d_model, nhead, dim_feedforward, dropout, activation,
layer_norm_eps, batch_first, norm_first, device, dtype
)
self.self_attn = MaestroMultiheadAttention(
d_model, nhead, dropout=dropout,
batch_first=batch_first)
self.multihead_attn = MaestroMultiheadAttention(
d_model, nhead, dropout=dropout,
batch_first=batch_first)
# Implementation of Feedforward model
self.linear1 = MaestroLinear(d_model, dim_feedforward)
self.linear2 = MaestroLinear(dim_feedforward, d_model)
def forward(
self,
tgt: Tensor,
memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
tgt_is_causal: bool = False,
memory_is_causal: bool = False,
sampler: BaseSampler = None,
) -> Tensor:
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
x = tgt
if self.norm_first:
x = x + self._sa_block(
self.norm1(x), tgt_mask, tgt_key_padding_mask, tgt_is_causal,
sampler=sampler)
x = x + self._mha_block(
self.norm2(x), memory, memory_mask,
memory_key_padding_mask, memory_is_causal,
sampler=sampler)
x = x + self._ff_block(self.norm3(x), sampler=sampler)
else:
x = self.norm1(x + self._sa_block(
x, tgt_mask, tgt_key_padding_mask, tgt_is_causal,
sampler=sampler))
x = self.norm2(x + self._mha_block(
x, memory, memory_mask, memory_key_padding_mask,
memory_is_causal, sampler=sampler))
x = self.norm3(x + self._ff_block(x, sampler=sampler))
return x
def _sa_block(self, x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
is_causal: bool = False,
sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
x = self.self_attn(x, x, x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
need_weights=False,
sampler=sampler)[0]
return self.dropout1(x)
# multihead attention block
def _mha_block(self, x: Tensor, mem: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
is_causal: bool = False,
sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
x = self.multihead_attn(x, mem, mem,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
need_weights=False,
sampler=sampler)[0]
return self.dropout2(x)
# feed forward block
def _ff_block(self, x: Tensor, sampler: BaseSampler = None) -> Tensor:
if sampler is None:
def none_sampler():
return None
sampler = none_sampler
x = self.linear2(
self.dropout(self.activation(
self.linear1(x, p=sampler()))),
p=sampler())
return self.dropout3(x)