Skip to content

Latest commit

 

History

History
71 lines (62 loc) · 2.78 KB

README.md

File metadata and controls

71 lines (62 loc) · 2.78 KB

Official Implementation of Which layers should undergo personalization in Federated Learning?

alt text

Envinronment Setup

python3 -m venv .env
source .env/bin/activate
python -m pip install -U pip
pip install -r requirements.txt

The project is conducted using the Nvidia Driver version of 535.xx and CUDA version of 12.1, hence Pytorch can be installed as follows:

pip3 install torch torchvision torchaudio

Data Setup

To generate data set in various configuration first move your pointer into /path/to/FedLAG/dataset

cd /path/to/FedLAG/dataset

Generate IDD & Non IID scenario

To generate dataset with IDD or Non IDD scenario, user need to adjust the value fed into the first arg of each generator file (i.e. generate_cifar10.py).

python generate_cifar10.py noniid # noniid case
python generate_cifar10.py iid # iid case

To set balance or imbalance distribution

python generate_cifar10.py noniid balance # balance case
python generate_cifar10.py noniid - # long-tailed distribution case

Generate Data set for different number of users along with different distribution

Use the following command to generate data set with different number (i.e. 20, 40, 60, 80, 100) of users and alpha factor (i.e. 0.1, 1) of Dirichlet distribution

python generate_cifar10.py iid - dir 20 0.1
python generate_cifar10.py iid - dir 40 0.1 
python generate_cifar10.py iid - dir 60 0.1 
python generate_cifar10.py iid - dir 80 0.1
python generate_cifar10.py iid - dir 100 0.1
python generate_cifar10.py noniid - dir 20 0.1
python generate_cifar10.py noniid - dir 40 0.1
python generate_cifar10.py noniid - dir 60 0.1
python generate_cifar10.py noniid - dir 80 0.1
python generate_cifar10.py noniid - dir 100 0.1

the mid param is used to bump data set into partition.

Simulation Conducting

After generate needed data set, repo user can conduct experiment. First cd to system folder.

cd /path/to/FedLAG/system

then use the params in main.py to conduct the simulation, the follow command is an example:

python -u main.py -lbs 16 -nc 20 -jr 1 -nb 10 -data Cifar10 -m dnn -algo FedFomo -gr 2000 -M 5 -did 1 -go dnn --log

Wandb and Tensorboard

If you want to track your experiment, consider use --log args, toggle it to use the wandb and tensorboard along with a automated folder structure.

Benchmark and Visualization

If you want to clone all experiments from Wandb and visualize them, consider use the two following files:

  • /path/to/FedLAG/benchmark/gather_online_data.py to gather all experiments
  • /path/to/FedLAG/benchmark/benchmark.py to create an offline benchmark, which is saved to /path/to/FedLAG/benchmark/results_plot/

Citation