-
Notifications
You must be signed in to change notification settings - Fork 1
/
variance_structures.html
758 lines (665 loc) · 23.2 KB
/
variance_structures.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Variance Structures</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/lumen.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/kePrint-0.0.1/kePrint.js"></script>
<link href="site_libs/lightable-0.0.1/lightable.css" rel="stylesheet" />
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="styles.css" type="text/css" />
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 54px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 59px;
margin-top: -59px;
}
.section h2 {
padding-top: 59px;
margin-top: -59px;
}
.section h3 {
padding-top: 59px;
margin-top: -59px;
}
.section h4 {
padding-top: 59px;
margin-top: -59px;
}
.section h5 {
padding-top: 59px;
margin-top: -59px;
}
.section h6 {
padding-top: 59px;
margin-top: -59px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
@media print {
.toc-content {
/* see https://github.com/w3c/csswg-drafts/issues/4434 */
float: right;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">MMFAIR</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Chapters
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="heterogeneous_error_variance.html">Heterogeneous error variance</a>
</li>
<li>
<a href="autoregressive_time_series.html">First-order autoregressive</a>
</li>
<li>
<a href="weighted_two_stage.html">Weighted two-stage analyses</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Summaries
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="variance_structures.html">Variance Structures</a>
</li>
<li>
<a href="model_selection.html">Model Selection</a>
</li>
<li>
<a href="glmmtmbdispformula0.html">Error varcov struct with glmmTMB</a>
</li>
</ul>
</li>
<li>
<a href="sources.html">Sources</a>
</li>
<li>
<a href="0contactinfo.html">Contact</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Variance Structures</h1>
</div>
<p>Here you will find a list of variance structures (<em>a.k.a</em> covariance structures, variance-covariance-structures, correlation structures) with short explanations and possibly examples.</p>
<div id="iid---independent-identically-distributed" class="section level1">
<h1>IID - Independent & Identically Distributed</h1>
<p><strong>This covariance structure has homogeneous variances and zero correlation between elements.</strong></p>
<p>Number of parameters = 1 (<em>i.e.</em> <span class="math inline">\(\sigma\)</span>)</p>
<p><span class="math display">\[
\left(\begin{array}{cc}
\sigma^2 & 0 & 0 & 0\\
& \sigma^2 & 0 & 0\\
& & \sigma^2 & 0\\
& & & \sigma^2\\
\end{array}\right) =
\left(\begin{array}{cc}
1 & 0 & 0 & 0\\
& 1 & 0 & 0\\
& & 1 & 0\\
& & & 1\\
\end{array}\right) \sigma^2
\]</span></p>
<p>This is the simplest covariance structure and the default setting in most, if not all, linear modelling packages.</p>
</div>
<div id="diagonal" class="section level1">
<h1>Diagonal</h1>
<p><strong>This covariance structure has heterogenous variances and zero correlation between elements.</strong></p>
<p>Number of parameters: <span class="math inline">\(t\)</span> (<em>i.e.</em> <span class="math inline">\(\sigma_1\)</span>, <span class="math inline">\(\sigma_2\)</span>, …, <span class="math inline">\(\sigma_t\)</span>), which is the overall dimension of the covariance matrix (<em>e.g.</em> number of treatement levels).</p>
<p><span class="math display">\[
\left(\begin{array}{cc}
\sigma_1^2 & 0 & 0 & 0\\
& \sigma_2^2 & 0 & 0\\
& & \sigma_3^2 & 0\\
& & & \sigma_4^2\\
\end{array}\right) =
\left(\begin{array}{cc}
1 & 0 & 0 & 0\\
& k_1 & 0 & 0\\
& & k_2 & 0\\
& & & k_3\\
\end{array}\right) \sigma^2
\]</span></p>
<p>In our <a href="heterogeneous_error_variance.html" target="_blank">chapter on heterogeneous error variances</a>, we fit models in which we allow for different error variances for two of the treatments. Thus, the off-diagonals are all 0, but there are multiple variances on the diagonal. More specifically, in <code>mod5</code> we allows for 8 different error variances - one for each factor-level-combination of the respective factor effects <code>date</code> and <code>density</code>. This is visualized in the plot below as 8 different colors. Speaking in the <a href="https://cran.r-project.org/web/packages/nlme/nlme.pdf#Rfn.nlmeStruct.1" target="_blank">syntax of <code>nlme</code></a>, we obtain 8 parameter estimates: 1 estimate for the <a href="https://cran.r-project.org/web/packages/nlme/nlme.pdf#Rfn.nlmeObject.1" target="_blank">model-object’s <code>sigma</code></a> (= standard deviation for error term) and 7 estimates (that are different from 1) in the <a href="https://cran.r-project.org/web/packages/nlme/nlme.pdf#Rfn.nlmeStruct.1" target="_blank">model-object’s <code>varStruct</code></a> as can be seen on the y-axis:</p>
<p><img src="variance_structures_files/figure-html/unnamed-chunk-2-1.png" width="672" /></p>
<blockquote>
<p>In order to give a clearer picture, the variance matrix presented here was reduced to data of a single block in order to have dimensions 16x16. Since there were <a href="heterogeneous_error_variance.html" target="_blank">4 complete blocks in the dataset</a>, the entire variance matrix of the error term has dimensions 64x64. However, given that data/errors are sorted accordingly, our presented matrix is simply 1 out of 4 blocks in a <a href="https://www.wikiwand.com/en/Block_matrix#/Block_diagonal_matrices" target="_blank">block diagonal matrix</a>.</p>
</blockquote>
</div>
<div id="first-order-autoregressive-ar1" class="section level1">
<h1>First order autoregressive AR(1)</h1>
<p><strong>This covariance structure has homogeneous variances, while the correlation between any two elements gets smaller the further apart they are separated (e.g. in terms of time or space).</strong></p>
<p>Number of parameters: 2 (<em>i.e.</em> <span class="math inline">\(\sigma\)</span> and <span class="math inline">\(\rho\)</span>).</p>
<p><span class="math display">\[
\left(\begin{array}{cc}
\sigma^2 & \sigma^2\rho & \sigma^2\rho^2 & \sigma^2\rho^3\\
& \sigma^2 & \sigma^2\rho & \sigma^2\rho^2\\
& & \sigma^2 & \sigma^2\rho\\
& & & \sigma^2\\
\end{array}\right) =
\left(\begin{array}{cc}
1 & \rho & \rho^2 & \rho^3\\
& 1 & \rho & \rho^2\\
& & 1 & \rho\\
& & & 1\\
\end{array}\right) \sigma^2
\]</span></p>
<p>As can be seen, the correlation between any two elements can be described more speficically as: it is equal to <span class="math inline">\(\rho\)</span> for adjacent elements, <span class="math inline">\(\rho^2\)</span> for elements that are separated by a third, and so on. Note that since it is a correlation, we have -1 < <span class="math inline">\(\rho\)</span> < 1 and therefore <span class="math inline">\(\rho\)</span> indeed gets smaller when squared etc. This correlation model is useful, if all time points are equally spaced.</p>
<p>As an explicit example, take the correlation between errors of two adjacent time points, in this case weeks, to be <span class="math inline">\(\rho=0.9\)</span>. The correlation between errors that are two weeks apart is then <span class="math inline">\(\rho^2=0.9^2=0.81\)</span> and when they are three weeks apart it is <span class="math inline">\(\rho^3=0.9^3=0.729\)</span> and so on. Thus, the advantage here is that correlations become smaller over time and thus we have different correlation estimates, yet only a single correlation parameter <span class="math inline">\(\rho\)</span> is fitted in the model.</p>
</div>
<div id="multiplicative" class="section level1">
<h1>Multiplicative</h1>
<p><strong>It is possible to combine any two or more variance structures via direct multiplication <em>a.k.a.</em> the <a href="https://www.wikiwand.com/en/Kronecker_product" target="_blank">Kronecker product</a>.</strong></p>
<p><span class="math display">\[
\left(\begin{array}{cc}
1 & 0 \\
& k_1 \\
\end{array}\right)
\otimes
\left(\begin{array}{cc}
1 & 0 & 0 \\
& k_2 & 0 \\
& & k_3 \\
\end{array}\right) \sigma^2
=
\left(\begin{array}{cc}
1\cdot1 & 0 & 0 & 0 & 0 & 0 \\
& 1\cdot k_2 & 0 & 0 & 0 & 0 \\
& & 1\cdot k_3 & 0 & 0 & 0 \\
& & & k_1\cdot 1 & 0 & 0 \\
& & & & k_1\cdot k_2 & 0 \\
& & & & & k_1\cdot k_3 \\
\end{array}\right) \sigma^2
\]</span></p>
<p>This operation on two matrices of arbitrary size resulting in a block matrix is sometimes denoted by <span class="math inline">\(\otimes\)</span>. To give an example, we refer to <code>mod4</code> in the <a href="heterogeneous_error_variance.html" target="_blank">chapter on heterogeneous error variances</a>. Here, a multiplicative variance structure results from the kronecker product of two diagonal variance structures. The first diagonal variance structure allows for different variances for the 2 levels of <code>date</code>, while the second diagonal variance structure allows for different variances for the 4 levels of <code>density</code>. Their Kronecker product therefore results in 8 different variances, visualized in the plot below as 8 different colors.</p>
<p><img src="variance_structures_files/figure-html/unnamed-chunk-3-1.png" width="672" /></p>
<div id="advantage" class="section level2">
<h2>Advantage</h2>
<p>One may now ask where the difference lies between this multiplicative variance structure for <code>mod4</code> on the one hand, and the simple diagonal variance structure for all 8 <code>date</code>-<code>density</code>-combinations in <code>mod5</code> (see <a href="#Diagonal">diagonal section above</a>) on the other hand. The question comes intuitively, since both lead to obtaining 8 different variance estimates for the error term. However, while the combinations for which the 8 estimates are obtained are the same, the estimates themselves are different between <code>mod4</code> and <code>mod5</code>. In order to understand this, one must realize that fewer parameters need to be estimated here for <code>mod4</code> (= 6 parameters) compared to the simple diagonal variance structure for <a href="#Diagonal"><code>mod5</code></a> (= 8 parameters) - even though both result in 8 different variance estimates! One can retrace this manually by counting the number of <code>varStruct</code> values on the y-axes of the two plots. There should be 5 values for <code>mod4</code> and 7 values for <code>mod5</code> <strong>that are not equal to 1</strong> and in addition, <a href="https://cran.r-project.org/web/packages/nlme/nlme.pdf#Rfn.nlmeObject.1" target="_blank"><code>sigma</code></a> (= standard deviation for error term) itself is the <em>missing</em> parameter here.</p>
<p>Therefore, <strong>direct multiplication can lead to the desired structure with fewer parameters needing to be estimated</strong>. Notice that the number of parameters penalizes the AIC and therefore has a direct impact on model selection decisions. In the underlying <a href="heterogeneous_error_variance.html" target="_blank">chapter on heterogeneous error variances</a>, <code>mod4</code> (= multiplicative) is indeed chosen over <code>mod5</code> based on the AIC.</p>
</div>
</div>
<div id="summary" class="section level1">
<h1>Summary</h1>
<table class="table table-striped table-hover table-condensed table-responsive" style="width: auto !important; margin-left: auto; margin-right: auto;border-bottom: 0;">
<thead>
<tr>
<th style="empty-cells: hide;border-bottom:hidden;" colspan="1">
</th>
<th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="3">
<div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">
number of parameters
</div>
</th>
<th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="5">
<div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">
name in package
</div>
</th>
</tr>
<tr>
<th style="text-align:left;">
Variance Structure
</th>
<th style="text-align:left;">
total
</th>
<th style="text-align:left;">
var
</th>
<th style="text-align:left;">
cor
</th>
<th style="text-align:left;">
nlme
</th>
<th style="text-align:left;">
lme4
</th>
<th style="text-align:left;">
glmmTMB
</th>
<th style="text-align:left;">
sommer
</th>
<th style="text-align:left;">
SAS
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
Identitiy
</td>
<td style="text-align:left;">
1
</td>
<td style="text-align:left;">
1
</td>
<td style="text-align:left;">
0
</td>
<td style="text-align:left;">
default
</td>
<td style="text-align:left;">
default
</td>
<td style="text-align:left;">
default
</td>
<td style="text-align:left;">
default
</td>
<td style="text-align:left;">
VC
</td>
</tr>
<tr>
<td style="text-align:left;">
Diagonal
</td>
<td style="text-align:left;">
t
</td>
<td style="text-align:left;">
t
</td>
<td style="text-align:left;">
0
</td>
<td style="text-align:left;">
varIdent
</td>
<td style="text-align:left;">
–
</td>
<td style="text-align:left;">
diag
</td>
<td style="text-align:left;">
ds
</td>
<td style="text-align:left;">
UN(1)
</td>
</tr>
<tr>
<td style="text-align:left;">
First order autoregressive
</td>
<td style="text-align:left;">
2
</td>
<td style="text-align:left;">
1
</td>
<td style="text-align:left;">
1
</td>
<td style="text-align:left;">
corAR1
</td>
<td style="text-align:left;">
–
</td>
<td style="text-align:left;">
ar1
</td>
<td style="text-align:left;">
AR1
</td>
<td style="text-align:left;">
AR(1)
</td>
</tr>
</tbody>
<tfoot>
<tr>
<td style="padding: 0; " colspan="100%">
<span style="font-style: italic;">Note: </span>
</td>
</tr>
<tr>
<td style="padding: 0; " colspan="100%">
<sup></sup> t = overall dimension of the covariance matrix (e.g. number of treatement levels).
</td>
</tr>
</tfoot>
</table>
</div>
<div id="more-on-this" class="section level1">
<h1>More on this</h1>
<p><a href="https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/2018/02/ASReml-R-Reference-Manual-4.pdf#section.4.2" target="_blank">ASReml-R documentation</a></p>
<p><a href="https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_mixed_syntax14.htm&docsetVersion=14.3&locale=en#statug.mixed.repeatedstmt_type" target="_blank">SAS documentation</a></p>
<p><a href="https://www.ibm.com/support/knowledgecenter/SSLVMB_23.0.0/spss/advanced/covariance_structures.html" target="_blank">SPSS documentation</a></p>
<p><span style="color:red">in progress</span></p>
</div>
<hr />
<p style="text-align: center;">Please feel free to contact us about any of this! </p>
<p style="text-align: center;"><span style="color: #003f75ff;"><em>schmidtpaul1989@outlook.com</em></span></p>
<!-- Add icon library -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<!-- Add font awesome icons -->
<p style="text-align: center;">
<a href="https://www.researchgate.net/project/MMFAIR-Mixed-Models-for-Agriculture-in-R" class="fa fa-pencil" style="color: #003f75ff;"></a>
<a href="https://www.linkedin.com/in/schmidtpaul1989/" class="fa fa-linkedin" style="color: #003f75ff;"></a>
<a href="https://www.xing.com/profile/Paul_Schmidt393/cv" class="fa fa-xing" style="color: #003f75ff;"></a>
<a href="https://github.com/SchmidtPaul/" class="fa fa-github" style="color: #003f75ff;"></a>
</p>
<a href="https://hits.seeyoufarm.com"><img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fschmidtpaul.github.io%2FMMFAIR%2F&count_bg=%23003F75&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false" class="center"/></a>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_');
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = true;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>