-
Notifications
You must be signed in to change notification settings - Fork 0
/
Geometric_log.txt
417 lines (367 loc) · 37 KB
/
Geometric_log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
Geometric (c) SCHRAUSSER 2009; 05/13/09 20:48:10;
p= 0.027, q= 0.973, r+1= 30
i Pi <pi >pi
121 |% 0.001011357259953 0.963554788948085 0.037456568311868
120 |% 0.001039421644350 0.962543431688132 0.038495989956219
119 |% 0.001068264793783 0.961504010043781 0.039564254750001
118 |% 0.001097908318379 0.960435745249999 0.040662163068380
117 |% 0.001128374427933 0.959337836931620 0.041790537496313
116 |% 0.001159685948544 0.958209462503687 0.042950223444857
115 |% 0.001191866339716 0.957049776555143 0.044142089784573
114 |% 0.001224939711938 0.955857910215427 0.045367029496511
113 |% 0.001258930844747 0.954632970503489 0.046625960341258
112 |% 0.001293865205289 0.953374039658742 0.047919825546547
111 |% 0.001329768967409 0.952080174453453 0.049249594513956
110 |%% 0.001366669031253 0.950750405486044 0.050616263545210
109 |%% 0.001404593043426 0.949383736454790 0.052020856588635
108 |%% 0.001443569417704 0.947979143411365 0.053464426006339
107 |%% 0.001483627356324 0.946535573993661 0.054948053362664
106 |%% 0.001524796871865 0.945051946637336 0.056472850234528
105 |%% 0.001567108809727 0.943527149765472 0.058039959044256
104 |%% 0.001610594871251 0.941960040955744 0.059650553915507
103 |%% 0.001655287637463 0.940349446084493 0.061305841552970
102 |%% 0.001701220593487 0.938694158447030 0.063007062146457
101 |%% 0.001748428153635 0.936992937853543 0.064755490300092
100 |%% 0.001796945687189 0.935244509699908 0.066552435987281
99 |%% 0.001846809544901 0.933447564012719 0.068399245532182
98 |%% 0.001898057086230 0.931600754467818 0.070297302618412
97 |%% 0.001950726707328 0.929702697381588 0.072248029325740
96 |%% 0.002004857869812 0.927751970674260 0.074252887195552
95 |%%% 0.002060491130331 0.925747112804448 0.076313378325884
94 |%%% 0.002117668170947 0.923686621674116 0.078431046496831
93 |%%% 0.002176431830367 0.921568953503169 0.080607478327197
92 |%%% 0.002236826136040 0.919392521672803 0.082844304463237
91 |%%% 0.002298896337143 0.917155695536763 0.085143200800380
90 |%%% 0.002362688938482 0.914856799199620 0.087505889738862
89 |%%% 0.002428251735336 0.912494110261138 0.089934141474198
88 |%%% 0.002495633849266 0.910065858525802 0.092429775323464
87 |%%% 0.002564885764919 0.907570224676536 0.094994661088383
86 |%%% 0.002636059367851 0.905005338911617 0.097630720456234
85 |%%%% 0.002709207983403 0.902369279543766 0.100339928439637
84 |%%%% 0.002784386416652 0.899660071560363 0.103124314856289
83 |%%%% 0.002861650993476 0.896875685143711 0.105985965849765
82 |%%%% 0.002941059602750 0.894014034150235 0.108927025452516
81 |%%%% 0.003022671739723 0.891072974547484 0.111949697192239
80 |%%%% 0.003106548550589 0.888050302807761 0.115056245742828
79 |%%%% 0.003192752878303 0.884943754257173 0.118248998621131
78 |%%%% 0.003281349309664 0.881751001378869 0.121530347930795
77 |%%%% 0.003372404223704 0.878469652069205 0.124902752154499
76 |%%%%% 0.003465985841422 0.875097247845501 0.128368737995921
75 |%%%%% 0.003562164276899 0.871631262004079 0.131930902272820
74 |%%%%% 0.003661011589824 0.868069097727180 0.135591913862644
73 |%%%%% 0.003762601839490 0.864408086137356 0.139354515702134
72 |%%%%% 0.003867011140278 0.860645484297866 0.143221526842412
71 |%%%%% 0.003974317718682 0.856778473157588 0.147195844561094
70 |%%%%%% 0.004084601971924 0.852804155438906 0.151280446533018
69 |%%%%%% 0.004197946528185 0.848719553466982 0.155478393061203
68 |%%%%%% 0.004314436308515 0.844521606938797 0.159792829369718
67 |%%%%%% 0.004434158590457 0.840207170630282 0.164226987960175
66 |%%%%%% 0.004557203073440 0.835773012039825 0.168784191033615
65 |%%%%%% 0.004683661945982 0.831215808966385 0.173467852979597
64 |%%%%%%% 0.004813629954760 0.826532147020403 0.178281482934357
63 |%%%%%%% 0.004947204475601 0.821718517065643 0.183228687409959
62 |%%%%%%% 0.005084485586435 0.816771312590041 0.188313172996394
61 |%%%%%%% 0.005225576142277 0.811686827003606 0.193538749138670
60 |%%%%%%% 0.005370581852288 0.806461250861330 0.198909330990959
59 |%%%%%%%% 0.005519611358981 0.801090669009041 0.204428942349940
58 |%%%%%%%% 0.005672776319610 0.795571057650060 0.210101718669550
57 |%%%%%%%% 0.005830191489836 0.789898281330450 0.215931910159386
56 |%%%%%%%% 0.005991974809698 0.784068089840614 0.221923884969084
55 |%%%%%%%%% 0.006158247491981 0.778076115030916 0.228082132461065
54 |%%%%%%%%% 0.006329134113033 0.771917867538935 0.234411266574099
53 |%%%%%%%%% 0.006504762706098 0.765588733425902 0.240916029280196
52 |%%%%%%%%% 0.006685264857243 0.759083970719803 0.247601294137440
51 |%%%%%%%%%% 0.006870775803950 0.752398705862560 0.254472069941390
50 |%%%%%%%%%% 0.007061434536434 0.745527930058610 0.261533504477824
49 |%%%%%%%%%% 0.007257383901782 0.738466495522176 0.268790888379606
48 |%%%%%%%%%%% 0.007458770710978 0.731209111620394 0.276249659090584
47 |%%%%%%%%%%% 0.007665745848899 0.723750340909416 0.283915404939483
46 |%%%%%%%%%%% 0.007878464387357 0.716084595060517 0.291793869326840
45 |%%%%%%%%%%% 0.008097085701292 0.708206130673160 0.299890955028132
44 |%%%%%%%%%%%% 0.008321773588173 0.700109044971868 0.308212728616305
43 |%%%%%%%%%%%% 0.008552696390722 0.691787271383695 0.316765425007027
42 |%%%%%%%%%%%%% 0.008790027123044 0.683234574992973 0.325555452130072
41 |%%%%%%%%%%%%% 0.009033943600251 0.674444547869928 0.334589395730323
40 |%%%%%%%%%%%%% 0.009284628571687 0.665410604269677 0.343874024302010
39 |%%%%%%%%%%%%%% 0.009542269857849 0.656125975697990 0.353416294159858
38 |%%%%%%%%%%%%%% 0.009807060491109 0.646583705840142 0.363223354650967
37 |%%%%%%%%%%%%%% 0.010079198860338 0.636776645349033 0.373302553511305
36 |%%%%%%%%%%%%%%% 0.010358888859546 0.626697446488695 0.383661442370851
35 |%%%%%%%%%%%%%%% 0.010646340040643 0.616338557629149 0.394307782411493
34 |%%%%%%%%%%%%%%%% 0.010941767770445 0.605692217588506 0.405249550181938
33 |%%%%%%%%%%%%%%%% 0.011245393392030 0.594750449818062 0.416494943573968
32 |%%%%%%%%%%%%%%%%% 0.011557444390575 0.583505056426032 0.428052387964543
31 |%%%%%%%%%%%%%%%%% 0.011878154563798 0.571947612035457 0.439930542528341
30 |__________________ 0.0122 0.012207764197120 0.560069457471659 0.452138306725461
29 ||||||||||||||||||| 0.012546520243700 0.547861693274539 0.464684826969161
28 |||||||||||||||||||| 0.012894676509455 0.535315173030839 0.477579503478616
27 |||||||||||||||||||| 0.013252493843222 0.522420496521384 0.490831997321838
26 ||||||||||||||||||||| 0.013620240332191 0.509168002678162 0.504452237654030
25 ||||||||||||||||||||| 0.013998191502766 0.495547762345970 0.518450429156796
24 |||||||||||||||||||||| 0.014386630526995 0.481549570843204 0.532837059683791
23 |||||||||||||||||||||| 0.014785848434733 0.467162940316209 0.547622908118523
22 ||||||||||||||||||||||| 0.015196144331688 0.452377091881477 0.562819052450212
21 |||||||||||||||||||||||| 0.015617825623523 0.437180947549788 0.578436878073735
20 |||||||||||||||||||||||| 0.016051208246170 0.421563121926265 0.594488086319905
19 ||||||||||||||||||||||||| 0.016496616902539 0.405511913680095 0.610984703222444
18 |||||||||||||||||||||||||| 0.016954385305795 0.389015296777556 0.627939088528239
17 |||||||||||||||||||||||||| 0.017424856429389 0.372060911471761 0.645363944957627
16 ||||||||||||||||||||||||||| 0.017908382764017 0.354636055042373 0.663272327721644
15 |||||||||||||||||||||||||||| 0.018405326581724 0.336727672278356 0.681677654303368
14 ||||||||||||||||||||||||||||| 0.018916060207321 0.318322345696632 0.700593714510689
13 ||||||||||||||||||||||||||||| 0.019440966297350 0.299406285489311 0.720034680808039
12 |||||||||||||||||||||||||||||| 0.019980438126772 0.279965319191961 0.740015118934811
11 ||||||||||||||||||||||||||||||| 0.020534879883630 0.259984881065189 0.760549998818441
10 |||||||||||||||||||||||||||||||| 0.021104706971871 0.239450001181559 0.781654705790312
9 ||||||||||||||||||||||||||||||||| 0.021690346322581 0.218345294209687 0.803345052112893
8 |||||||||||||||||||||||||||||||||| 0.022292236713855 0.196654947887107 0.825637288826748
7 |||||||||||||||||||||||||||||||||| 0.022910829099542 0.174362711173252 0.848548117926290
6 ||||||||||||||||||||||||||||||||||| 0.023546586947115 0.151451882073710 0.872094704873405
5 |||||||||||||||||||||||||||||||||||| 0.024199986584907 0.127905295126595 0.896294691458312
4 ||||||||||||||||||||||||||||||||||||| 0.024871517559000 0.103705308541688 0.921166209017312
3 |||||||||||||||||||||||||||||||||||||| 0.025561683000000 0.078833790982688 0.946727892017312
2 ||||||||||||||||||||||||||||||||||||||| 0.026271000000000 0.053272107982688 0.972998892017312
1 ||||||||||||||||||||||||||||||||||||||||| 0.027000000000000 0.027001107982688 0.999998892017312
Geometric Point Probability r+1 P= 0.012207764197120
Geometric kum. Probability <=r+1 <p= 0.560068349488971
Geometric kum. Probability >r+1 >p= 0.439931650511029
Geometric (c) SCHRAUSSER 2009; 05/13/09 20:48:13;
p= 0.167, q= 0.833, r+1= 8
i Pi <pi >pi
29 | 0.001010959842928 0.994945322098114 0.006065637744815
28 | 0.001213156664141 0.993934362255186 0.007278794408955
27 | 0.001455793820144 0.992721205591045 0.008734588229099
26 | 0.001746959572011 0.991265411770901 0.010481547801110
25 | 0.002096359871853 0.989518452198890 0.012577907672963
24 | 0.002515641908791 0.987422092327037 0.015093549581754
23 | 0.003018782365678 0.984906450418247 0.018112331947432
22 | 0.003622553329028 0.981887668052568 0.021734885276460
21 |% 0.004347081383159 0.978265114723541 0.026081966659618
20 |% 0.005216518525864 0.973918033340382 0.031298485185482
19 |% 0.006259847270426 0.968701514814517 0.037558332455909
18 |% 0.007511846771899 0.962441667544091 0.045070179227807
17 |%% 0.009014252183287 0.954929820772193 0.054084431411095
16 |%% 0.010817145888528 0.945915568588905 0.064901577299623
15 |%%% 0.012980626988742 0.935098422700377 0.077882204288364
14 |%%% 0.015576814693749 0.922117795711636 0.093459018982113
13 |%%%% 0.018692252401508 0.906540981017887 0.112151271383621
12 |%%%%% 0.022430792604980 0.887848728616379 0.134582063988602
11 |%%%%%% 0.026917058794211 0.865417936011398 0.161499122782813
10 |%%%%%%% 0.032300599755453 0.838500877217187 0.193799722538266
9 |%%%%%%%%% 0.038760874750042 0.806200277461734 0.232560597288308
8 |___________ 0.0465 0.046513235752994 0.767439402711692 0.279073833041302
7 |||||||||||||| 0.055816106168017 0.720926166958698 0.334889939209319
6 ||||||||||||||||| 0.066979595320002 0.665110060790681 0.401869534529321
5 |||||||||||||||||||| 0.080375835887346 0.598130465470679 0.482245370416667
4 |||||||||||||||||||||||| 0.096451388870370 0.517754629583333 0.578696759287037
3 |||||||||||||||||||||||||||| 0.115742129612963 0.421303240712963 0.694438888900000
2 |||||||||||||||||||||||||||||||||| 0.138891111100000 0.305561111100000 0.833330000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.166670000000000 0.166670000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.046513235752994
Geometric kum. Probability <=r+1 <p= 0.767439402711692
Geometric kum. Probability >r+1 >p= 0.232560597288308
Geometric (c) SCHRAUSSER 2009; 05/13/09 20:48:17;
p= 0.500, q= 0.500, r+1= 30
i Pi <pi >pi
9 | 0.001953125000000 0.998046875000000 0.003906250000000
8 | 0.003906250000000 0.996093750000000 0.007812500000000
7 | 0.007812500000000 0.992187500000000 0.015625000000000
6 || 0.015625000000000 0.984375000000000 0.031250000000000
5 ||| 0.031250000000000 0.968750000000000 0.062500000000000
4 |||||| 0.062500000000000 0.937500000000000 0.125000000000000
3 ||||||||||| 0.125000000000000 0.875000000000000 0.250000000000000
2 ||||||||||||||||||||| 0.250000000000000 0.750000000000000 0.500000000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.500000000000000 0.500000000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.000000000931323
Geometric kum. Probability <=r+1 <p= 0.999999999068677
Geometric kum. Probability >r+1 >p= 0.000000000931323
Geometric (c) SCHRAUSSER 2009; 05/13/09 20:48:29;
p= 0.167, q= 0.833, r+1= 16
i Pi <pi >pi
29 | 0.001010959842928 0.994945322098114 0.006065637744815
28 | 0.001213156664141 0.993934362255186 0.007278794408955
27 | 0.001455793820144 0.992721205591045 0.008734588229099
26 | 0.001746959572011 0.991265411770901 0.010481547801110
25 | 0.002096359871853 0.989518452198890 0.012577907672963
24 | 0.002515641908791 0.987422092327037 0.015093549581754
23 | 0.003018782365678 0.984906450418247 0.018112331947432
22 | 0.003622553329028 0.981887668052568 0.021734885276460
21 |% 0.004347081383159 0.978265114723541 0.026081966659618
20 |% 0.005216518525864 0.973918033340382 0.031298485185482
19 |% 0.006259847270426 0.968701514814517 0.037558332455909
18 |% 0.007511846771899 0.962441667544091 0.045070179227807
17 |%% 0.009014252183287 0.954929820772193 0.054084431411095
16 |__ 0.0108 0.010817145888528 0.945915568588905 0.064901577299623
15 |||| 0.012980626988742 0.935098422700377 0.077882204288364
14 |||| 0.015576814693749 0.922117795711636 0.093459018982113
13 ||||| 0.018692252401508 0.906540981017887 0.112151271383621
12 |||||| 0.022430792604980 0.887848728616379 0.134582063988602
11 ||||||| 0.026917058794211 0.865417936011398 0.161499122782813
10 |||||||| 0.032300599755453 0.838500877217187 0.193799722538266
9 |||||||||| 0.038760874750042 0.806200277461734 0.232560597288308
8 |||||||||||| 0.046513235752994 0.767439402711692 0.279073833041302
7 |||||||||||||| 0.055816106168017 0.720926166958698 0.334889939209319
6 ||||||||||||||||| 0.066979595320002 0.665110060790681 0.401869534529321
5 |||||||||||||||||||| 0.080375835887346 0.598130465470679 0.482245370416667
4 |||||||||||||||||||||||| 0.096451388870370 0.517754629583333 0.578696759287037
3 |||||||||||||||||||||||||||| 0.115742129612963 0.421303240712963 0.694438888900000
2 |||||||||||||||||||||||||||||||||| 0.138891111100000 0.305561111100000 0.833330000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.166670000000000 0.166670000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.010817145888528
Geometric kum. Probability <=r+1 <p= 0.945915568588906
Geometric kum. Probability >r+1 >p= 0.054084431411094
Geometric (c) SCHRAUSSER 2009; 05/13/09 20:48:33;
p= 0.167, q= 0.833, r+1= 1
i Pi <pi >pi
29 | 0.001010959842928 0.994945322098114 0.006065637744815
28 | 0.001213156664141 0.993934362255186 0.007278794408955
27 | 0.001455793820144 0.992721205591045 0.008734588229099
26 | 0.001746959572011 0.991265411770901 0.010481547801110
25 | 0.002096359871853 0.989518452198890 0.012577907672963
24 | 0.002515641908791 0.987422092327037 0.015093549581754
23 | 0.003018782365678 0.984906450418247 0.018112331947432
22 | 0.003622553329028 0.981887668052568 0.021734885276460
21 |% 0.004347081383159 0.978265114723541 0.026081966659618
20 |% 0.005216518525864 0.973918033340382 0.031298485185482
19 |% 0.006259847270426 0.968701514814517 0.037558332455909
18 |% 0.007511846771899 0.962441667544091 0.045070179227807
17 |%% 0.009014252183287 0.954929820772193 0.054084431411095
16 |%% 0.010817145888528 0.945915568588905 0.064901577299623
15 |%%% 0.012980626988742 0.935098422700377 0.077882204288364
14 |%%% 0.015576814693749 0.922117795711636 0.093459018982113
13 |%%%% 0.018692252401508 0.906540981017887 0.112151271383621
12 |%%%%% 0.022430792604980 0.887848728616379 0.134582063988602
11 |%%%%%% 0.026917058794211 0.865417936011398 0.161499122782813
10 |%%%%%%% 0.032300599755453 0.838500877217187 0.193799722538266
9 |%%%%%%%%% 0.038760874750042 0.806200277461734 0.232560597288308
8 |%%%%%%%%%%% 0.046513235752994 0.767439402711692 0.279073833041302
7 |%%%%%%%%%%%%% 0.055816106168017 0.720926166958698 0.334889939209319
6 |%%%%%%%%%%%%%%%% 0.066979595320002 0.665110060790681 0.401869534529321
5 |%%%%%%%%%%%%%%%%%%% 0.080375835887346 0.598130465470679 0.482245370416667
4 |%%%%%%%%%%%%%%%%%%%%%%% 0.096451388870370 0.517754629583333 0.578696759287037
3 |%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.115742129612963 0.421303240712963 0.694438888900000
2 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.138891111100000 0.305561111100000 0.833330000000000
1 |________________________________________ 0.1667 0.166670000000000 0.166670000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.166670000000000
Geometric kum. Probability <=r+1 <p= 0.166670000000000
Geometric kum. Probability >r+1 >p= 0.833330000000000
Geometric (c) SCHRAUSSER 2009; 09/28/09 21:16:32;
p= 0.500, q= 0.500, r+1= 10
i Pi <pi >pi
9 | 0.001953125000000 0.998046875000000 0.003906250000000
8 | 0.003906250000000 0.996093750000000 0.007812500000000
7 | 0.007812500000000 0.992187500000000 0.015625000000000
6 || 0.015625000000000 0.984375000000000 0.031250000000000
5 ||| 0.031250000000000 0.968750000000000 0.062500000000000
4 |||||| 0.062500000000000 0.937500000000000 0.125000000000000
3 ||||||||||| 0.125000000000000 0.875000000000000 0.250000000000000
2 ||||||||||||||||||||| 0.250000000000000 0.750000000000000 0.500000000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.500000000000000 0.500000000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.000976562500000
Geometric kum. Probability <=r+1 <p= 0.999023437500000
Geometric kum. Probability >r+1 >p= 0.000976562500000
Geometric (c) SCHRAUSSER 2009; 09/28/09 21:16:47;
p= 0.500, q= 0.500, r+1= 10
i Pi <pi >pi
9 | 0.001953125000000 0.998046875000000 0.003906250000000
8 | 0.003906250000000 0.996093750000000 0.007812500000000
7 | 0.007812500000000 0.992187500000000 0.015625000000000
6 || 0.015625000000000 0.984375000000000 0.031250000000000
5 ||| 0.031250000000000 0.968750000000000 0.062500000000000
4 |||||| 0.062500000000000 0.937500000000000 0.125000000000000
3 ||||||||||| 0.125000000000000 0.875000000000000 0.250000000000000
2 ||||||||||||||||||||| 0.250000000000000 0.750000000000000 0.500000000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.500000000000000 0.500000000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.000976562500000
Geometric kum. Probability <=r+1 <p= 0.999023437500000
Geometric kum. Probability >r+1 >p= 0.000976562500000
Geometric (c) SCHRAUSSER 2009; 09/28/09 21:17:37;
p= 0.200, q= 0.800, r+1= 8
i Pi <pi >pi
24 | 0.001180591620717 0.995277633517130 0.005902958103587
23 | 0.001475739525897 0.994097041896413 0.007378697629484
22 | 0.001844674407371 0.992621302370516 0.009223372036855
21 | 0.002305843009214 0.990776627963145 0.011529215046068
20 | 0.002882303761517 0.988470784953931 0.014411518807586
19 | 0.003602879701896 0.985588481192414 0.018014398509482
18 | 0.004503599627371 0.981985601490518 0.022517998136853
17 |% 0.005629499534213 0.977482001863147 0.028147497671066
16 |% 0.007036874417766 0.971852502328934 0.035184372088832
15 |% 0.008796093022208 0.964815627911168 0.043980465111040
14 |%% 0.010995116277760 0.956019534888960 0.054975581388800
13 |%% 0.013743895347200 0.945024418611200 0.068719476736000
12 |%%% 0.017179869184000 0.931280523264000 0.085899345920000
11 |%%%% 0.021474836480000 0.914100654080000 0.107374182400000
10 |%%%%% 0.026843545600000 0.892625817600000 0.134217728000000
9 |%%%%%% 0.033554432000000 0.865782272000000 0.167772160000000
8 |________ 0.0419 0.041943040000000 0.832227840000000 0.209715200000000
7 ||||||||||| 0.052428800000000 0.790284800000000 0.262144000000000
6 |||||||||||||| 0.065536000000000 0.737856000000000 0.327680000000000
5 ||||||||||||||||| 0.081920000000000 0.672320000000000 0.409600000000000
4 ||||||||||||||||||||| 0.102400000000000 0.590400000000000 0.512000000000000
3 |||||||||||||||||||||||||| 0.128000000000000 0.488000000000000 0.640000000000000
2 ||||||||||||||||||||||||||||||||| 0.160000000000000 0.360000000000000 0.800000000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.200000000000000 0.200000000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.041943040000000
Geometric kum. Probability <=r+1 <p= 0.832227840000000
Geometric kum. Probability >r+1 >p= 0.167772160000000
Geometric (c) SCHRAUSSER 2009; 09/28/09 21:18:20;
p= 0.200, q= 0.800, r+1= 10
i Pi <pi >pi
24 | 0.001180591620717 0.995277633517130 0.005902958103587
23 | 0.001475739525897 0.994097041896413 0.007378697629484
22 | 0.001844674407371 0.992621302370516 0.009223372036855
21 | 0.002305843009214 0.990776627963145 0.011529215046068
20 | 0.002882303761517 0.988470784953931 0.014411518807586
19 | 0.003602879701896 0.985588481192414 0.018014398509482
18 | 0.004503599627371 0.981985601490518 0.022517998136853
17 |% 0.005629499534213 0.977482001863147 0.028147497671066
16 |% 0.007036874417766 0.971852502328934 0.035184372088832
15 |% 0.008796093022208 0.964815627911168 0.043980465111040
14 |%% 0.010995116277760 0.956019534888960 0.054975581388800
13 |%% 0.013743895347200 0.945024418611200 0.068719476736000
12 |%%% 0.017179869184000 0.931280523264000 0.085899345920000
11 |%%%% 0.021474836480000 0.914100654080000 0.107374182400000
10 |_____ 0.0268 0.026843545600000 0.892625817600000 0.134217728000000
9 ||||||| 0.033554432000000 0.865782272000000 0.167772160000000
8 ||||||||| 0.041943040000000 0.832227840000000 0.209715200000000
7 ||||||||||| 0.052428800000000 0.790284800000000 0.262144000000000
6 |||||||||||||| 0.065536000000000 0.737856000000000 0.327680000000000
5 ||||||||||||||||| 0.081920000000000 0.672320000000000 0.409600000000000
4 ||||||||||||||||||||| 0.102400000000000 0.590400000000000 0.512000000000000
3 |||||||||||||||||||||||||| 0.128000000000000 0.488000000000000 0.640000000000000
2 ||||||||||||||||||||||||||||||||| 0.160000000000000 0.360000000000000 0.800000000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.200000000000000 0.200000000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.026843545600000
Geometric kum. Probability <=r+1 <p= 0.892625817600000
Geometric kum. Probability >r+1 >p= 0.107374182400000
Geometric (c) SCHRAUSSER 2009; 09/28/09 21:18:38;
p= 0.200, q= 0.800, r+1= 10
i Pi <pi >pi
24 | 0.001180591620717 0.995277633517130 0.005902958103587
23 | 0.001475739525897 0.994097041896413 0.007378697629484
22 | 0.001844674407371 0.992621302370516 0.009223372036855
21 | 0.002305843009214 0.990776627963145 0.011529215046068
20 | 0.002882303761517 0.988470784953931 0.014411518807586
19 | 0.003602879701896 0.985588481192414 0.018014398509482
18 | 0.004503599627371 0.981985601490518 0.022517998136853
17 |% 0.005629499534213 0.977482001863147 0.028147497671066
16 |% 0.007036874417766 0.971852502328934 0.035184372088832
15 |% 0.008796093022208 0.964815627911168 0.043980465111040
14 |%% 0.010995116277760 0.956019534888960 0.054975581388800
13 |%% 0.013743895347200 0.945024418611200 0.068719476736000
12 |%%% 0.017179869184000 0.931280523264000 0.085899345920000
11 |%%%% 0.021474836480000 0.914100654080000 0.107374182400000
10 |_____ 0.0268 0.026843545600000 0.892625817600000 0.134217728000000
9 ||||||| 0.033554432000000 0.865782272000000 0.167772160000000
8 ||||||||| 0.041943040000000 0.832227840000000 0.209715200000000
7 ||||||||||| 0.052428800000000 0.790284800000000 0.262144000000000
6 |||||||||||||| 0.065536000000000 0.737856000000000 0.327680000000000
5 ||||||||||||||||| 0.081920000000000 0.672320000000000 0.409600000000000
4 ||||||||||||||||||||| 0.102400000000000 0.590400000000000 0.512000000000000
3 |||||||||||||||||||||||||| 0.128000000000000 0.488000000000000 0.640000000000000
2 ||||||||||||||||||||||||||||||||| 0.160000000000000 0.360000000000000 0.800000000000000
1 ||||||||||||||||||||||||||||||||||||||||| 0.200000000000000 0.200000000000000 1.000000000000000
Geometric Point Probability r+1 P= 0.026843545600000
Geometric kum. Probability <=r+1 <p= 0.892625817600000
Geometric kum. Probability >r+1 >p= 0.107374182400000