-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHypergeometric_log.txt
2247 lines (2037 loc) · 229 KB
/
Hypergeometric_log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Hypergeometric (c) SCHRAUSSER 2009; 05/16/09 01:34:14;
k(A)= 4, n(A)= 20, N= 100, K(A)= 30
i P(i) Pi <pi >pi
20 | 1.000 0.000000000000056 1.000000000000000 0.000000000000056
19 | 0.950 0.000000000007134 0.999999999999944 0.000000000007190
18 | 0.900 0.000000000389716 0.999999999992810 0.000000000396906
17 | 0.850 0.000000012231078 0.999999999603094 0.000000012627984
16 | 0.800 0.000000248771382 0.999999987372016 0.000000261399365
15 | 0.750 0.000003502701054 0.999999738600635 0.000003764100419
14 | 0.700 0.000035574307575 0.999996235899581 0.000039338407994
13 | 0.650 0.000267853609978 0.999960661592006 0.000307192017972
12 | 0.600 0.001523417406752 0.999692807982028 0.001830609424724
11 |% 0.550 0.006628202050428 0.998169390575276 0.008458811475152
10 |%%%% 0.500 0.022237617879185 0.991541188524848 0.030696429354337
9 |%%%%%%%%%% 0.450 0.057760046439441 0.969303570645663 0.088456475793778
8 |%%%%%%%%%%%%%%%%%%%%% 0.400 0.116176457042968 0.911543524206222 0.204632932836746
7 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.350 0.180287210929555 0.795367067163254 0.384920143766301
6 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.300 0.214091062978847 0.615079856233699 0.599011206745147
5 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.250 0.191825592429047 0.400988793254853 0.790836799174194
4 |_______________________ 0.1268 0.200 0.126807783456701 0.209163200825806 0.917644582630895
3 |||||||||||| 0.150 0.059674251038448 0.082355417369105 0.977318833669343
2 |||| 0.100 0.018825805387129 0.022681166330657 0.996144639056472
1 | 0.050 0.003553328058551 0.003855360943528 0.999697967115023
0 | 0.000 0.000302032884977 0.000302032884977 1.000000000000000
Hypergeometric Point Probability k P= 0.126807783456701
Hypergeometric kum. Probability <=k <p= 0.209163200825806
Hypergeometric kum. Probability >k >p= 0.790836799174194
Hypergeometric (c) SCHRAUSSER 2009; 05/16/09 01:34:27;
k(A)= 6, n(A)= 6, N= 45, K(A)= 6
i P(i) Pi <pi >pi
6 | 0.0000 1.000 0.000000122773804 1.000000000000000 0.000000122773804
5 | 0.833 0.000028729070136 0.999999877226196 0.000028851843940
4 | 0.667 0.001364630831449 0.999971148156060 0.001393482675389
3 ||| 0.500 0.022440595894935 0.998606517324611 0.023834078570324
2 ||||||||||||||| 0.333 0.151474022290812 0.976165921429676 0.175308100861135
1 ||||||||||||||||||||||||||||||||||||||||| 0.167 0.424127262414273 0.824691899138865 0.599435363275409
0 |||||||||||||||||||||||||||||||||||||| 0.000 0.400564636724591 0.400564636724591 1.000000000000000
Hypergeometric Point Probability k P= 0.000000122773804
Hypergeometric kum. Probability <=k <p= 1.000000000000000
Hypergeometric kum. Probability >k >p= 0.000000000000000
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:30:46;
k(A)= 3, n(A)= 6, N= 45, K(A)= 6
i P(i) Pi <pi >pi
6 | 1.000 0.000000122773804 1.000000000000000 0.000000122773804
5 | 0.833 0.000028729070136 0.999999877226196 0.000028851843940
4 | 0.667 0.001364630831449 0.999971148156060 0.001393482675389
3 |__ 0.0224 0.500 0.022440595894935 0.998606517324611 0.023834078570324
2 ||||||||||||||| 0.333 0.151474022290812 0.976165921429676 0.175308100861135
1 ||||||||||||||||||||||||||||||||||||||||| 0.167 0.424127262414273 0.824691899138865 0.599435363275409
0 |||||||||||||||||||||||||||||||||||||| 0.000 0.400564636724591 0.400564636724591 1.000000000000000
Hypergeometric Point Probability k P= 0.022440595894935
Hypergeometric kum. Probability <=k <p= 0.998606517324611
Hypergeometric kum. Probability >k >p= 0.001393482675389
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:30:52;
k(A)= 3, n(A)= 6, N= 45, K(A)= 6
i P(i) Pi <pi >pi
6 | 1.000 0.000000122773804 1.000000000000000 0.000000122773804
5 | 0.833 0.000028729070136 0.999999877226196 0.000028851843940
4 | 0.667 0.001364630831449 0.999971148156060 0.001393482675389
3 |__ 0.0224 0.500 0.022440595894935 0.998606517324611 0.023834078570324
2 ||||||||||||||| 0.333 0.151474022290812 0.976165921429676 0.175308100861135
1 ||||||||||||||||||||||||||||||||||||||||| 0.167 0.424127262414273 0.824691899138865 0.599435363275409
0 |||||||||||||||||||||||||||||||||||||| 0.000 0.400564636724591 0.400564636724591 1.000000000000000
Hypergeometric Point Probability k P= 0.022440595894935
Hypergeometric kum. Probability <=k <p= 0.998606517324611
Hypergeometric kum. Probability >k >p= 0.001393482675389
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:31:02;
k(A)= 6, n(A)= 6, N= 45, K(A)= 6
i P(i) Pi <pi >pi
6 | 0.0000 1.000 0.000000122773804 1.000000000000000 0.000000122773804
5 | 0.833 0.000028729070136 0.999999877226196 0.000028851843940
4 | 0.667 0.001364630831449 0.999971148156060 0.001393482675389
3 ||| 0.500 0.022440595894935 0.998606517324611 0.023834078570324
2 ||||||||||||||| 0.333 0.151474022290812 0.976165921429676 0.175308100861135
1 ||||||||||||||||||||||||||||||||||||||||| 0.167 0.424127262414273 0.824691899138865 0.599435363275409
0 |||||||||||||||||||||||||||||||||||||| 0.000 0.400564636724591 0.400564636724591 1.000000000000000
Hypergeometric Point Probability k P= 0.000000122773804
Hypergeometric kum. Probability <=k <p= 1.000000000000000
Hypergeometric kum. Probability >k >p= 0.000000000000000
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:31:45;
k(A)= 4, n(A)= 20, N= 100, K(A)= 30
i P(i) Pi <pi >pi
20 | 1.000 0.000000000000056 1.000000000000000 0.000000000000056
19 | 0.950 0.000000000007134 0.999999999999944 0.000000000007190
18 | 0.900 0.000000000389716 0.999999999992810 0.000000000396906
17 | 0.850 0.000000012231078 0.999999999603094 0.000000012627984
16 | 0.800 0.000000248771382 0.999999987372016 0.000000261399365
15 | 0.750 0.000003502701054 0.999999738600635 0.000003764100419
14 | 0.700 0.000035574307575 0.999996235899581 0.000039338407994
13 | 0.650 0.000267853609978 0.999960661592006 0.000307192017972
12 | 0.600 0.001523417406752 0.999692807982028 0.001830609424724
11 |% 0.550 0.006628202050428 0.998169390575276 0.008458811475152
10 |%%%% 0.500 0.022237617879185 0.991541188524848 0.030696429354337
9 |%%%%%%%%%% 0.450 0.057760046439441 0.969303570645663 0.088456475793778
8 |%%%%%%%%%%%%%%%%%%%%% 0.400 0.116176457042968 0.911543524206222 0.204632932836746
7 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.350 0.180287210929555 0.795367067163254 0.384920143766301
6 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.300 0.214091062978847 0.615079856233699 0.599011206745147
5 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.250 0.191825592429047 0.400988793254853 0.790836799174194
4 |_______________________ 0.1268 0.200 0.126807783456701 0.209163200825806 0.917644582630895
3 |||||||||||| 0.150 0.059674251038448 0.082355417369105 0.977318833669343
2 |||| 0.100 0.018825805387129 0.022681166330657 0.996144639056472
1 | 0.050 0.003553328058551 0.003855360943528 0.999697967115023
0 | 0.000 0.000302032884977 0.000302032884977 1.000000000000000
Hypergeometric Point Probability k P= 0.126807783456701
Hypergeometric kum. Probability <=k <p= 0.209163200825806
Hypergeometric kum. Probability >k >p= 0.790836799174194
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:32:29;
k(A)= 8, n(A)= 20, N= 100, K(A)= 30
i P(i) Pi <pi >pi
20 | 1.000 0.000000000000056 1.000000000000000 0.000000000000056
19 | 0.950 0.000000000007134 0.999999999999944 0.000000000007190
18 | 0.900 0.000000000389716 0.999999999992810 0.000000000396906
17 | 0.850 0.000000012231078 0.999999999603094 0.000000012627984
16 | 0.800 0.000000248771382 0.999999987372016 0.000000261399365
15 | 0.750 0.000003502701054 0.999999738600635 0.000003764100419
14 | 0.700 0.000035574307575 0.999996235899581 0.000039338407994
13 | 0.650 0.000267853609978 0.999960661592006 0.000307192017972
12 | 0.600 0.001523417406752 0.999692807982028 0.001830609424724
11 |% 0.550 0.006628202050428 0.998169390575276 0.008458811475152
10 |%%%% 0.500 0.022237617879185 0.991541188524848 0.030696429354337
9 |%%%%%%%%%% 0.450 0.057760046439441 0.969303570645663 0.088456475793778
8 |_____________________ 0.1162 0.400 0.116176457042968 0.911543524206222 0.204632932836746
7 |||||||||||||||||||||||||||||||||| 0.350 0.180287210929555 0.795367067163254 0.384920143766301
6 ||||||||||||||||||||||||||||||||||||||||| 0.300 0.214091062978847 0.615079856233699 0.599011206745147
5 |||||||||||||||||||||||||||||||||||| 0.250 0.191825592429047 0.400988793254853 0.790836799174194
4 |||||||||||||||||||||||| 0.200 0.126807783456701 0.209163200825806 0.917644582630895
3 |||||||||||| 0.150 0.059674251038448 0.082355417369105 0.977318833669343
2 |||| 0.100 0.018825805387129 0.022681166330657 0.996144639056472
1 | 0.050 0.003553328058551 0.003855360943528 0.999697967115023
0 | 0.000 0.000302032884977 0.000302032884977 1.000000000000000
Hypergeometric Point Probability k P= 0.116176457042968
Hypergeometric kum. Probability <=k <p= 0.911543524206221
Hypergeometric kum. Probability >k >p= 0.088456475793779
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:32:35;
k(A)= 8, n(A)= 40, N= 100, K(A)= 30
i P(i) Pi <pi >pi
40 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
39 | 0.975 0.000000000000000 1.000000000000000 0.000000000000000
38 | 0.950 0.000000000000000 1.000000000000000 0.000000000000000
37 | 0.925 0.000000000000000 1.000000000000000 0.000000000000000
36 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
35 | 0.875 0.000000000000000 1.000000000000000 0.000000000000000
34 | 0.850 0.000000000000000 1.000000000000000 0.000000000000000
33 | 0.825 0.000000000000000 1.000000000000000 0.000000000000000
32 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
31 | 0.775 0.000000000000000 1.000000000000000 0.000000000000000
30 | 0.750 0.000000000000000 1.000000000000000 0.000000000000000
29 | 0.725 0.000000000000005 1.000000000000000 0.000000000000005
28 | 0.700 0.000000000000337 0.999999999999995 0.000000000000341
27 | 0.675 0.000000000014019 0.999999999999659 0.000000000014361
26 | 0.650 0.000000000385278 0.999999999985639 0.000000000399638
25 | 0.625 0.000000007479527 0.999999999600362 0.000000007879165
24 | 0.600 0.000000107128640 0.999999992120835 0.000000115007805
23 | 0.575 0.000001166711911 0.999999884992195 0.000001281719716
22 | 0.550 0.000009876540412 0.999998718280284 0.000011158260129
21 | 0.525 0.000066074632934 0.999988841739871 0.000077232893063
20 | 0.500 0.000353829659362 0.999922767106938 0.000431062552424
19 | 0.475 0.001531730127106 0.999568937447576 0.001962792679530
18 |% 0.450 0.005401669501273 0.998037207320470 0.007364462180803
17 |%%% 0.425 0.015608837622407 0.992635537819197 0.022973299803210
16 |%%%%%%%% 0.400 0.037117444227092 0.977026700196791 0.060090744030301
15 |%%%%%%%%%%%%%%%% 0.375 0.072849170536372 0.939909255969699 0.132939914566673
14 |%%%%%%%%%%%%%%%%%%%%%%%%%% 0.350 0.118204783923200 0.867060085433327 0.251144698489873
13 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.325 0.158636485613706 0.748855301510127 0.409781184103579
12 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.300 0.175948006861233 0.590218815896421 0.585729190964812
11 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.275 0.160939737673433 0.414270809035188 0.746668928638245
10 |%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.250 0.120973036151197 0.253331071361755 0.867641964789442
9 |%%%%%%%%%%%%%%%% 0.225 0.074330590569092 0.132358035210558 0.941972555358534
8 |________ 0.0371 0.200 0.037059712059306 0.058027444641466 0.979032267417840
7 |||| 0.175 0.014843415633767 0.020967732582160 0.993875683051606
6 || 0.150 0.004711329226894 0.006124316948394 0.998587012278501
5 | 0.125 0.001163025272010 0.001412987721499 0.999750037550511
4 | 0.100 0.000217445964318 0.000249962449489 0.999967483514829
3 | 0.075 0.000029602253401 0.000032516485171 0.999997085768230
2 | 0.050 0.000002754345006 0.000002914231770 0.999999840113236
1 | 0.025 0.000000155860372 0.000000159886764 0.999999995973608
0 | 0.000 0.000000004026393 0.000000004026392 1.000000000000001
Hypergeometric Point Probability k P= 0.037059712059306
Hypergeometric kum. Probability <=k <p= 0.058027444641467
Hypergeometric kum. Probability >k >p= 0.941972555358533
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:32:42;
k(A)= 8, n(A)= 60, N= 100, K(A)= 30
i P(i) Pi <pi >pi
60 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
59 | 0.983 0.000000000000000 1.000000000000000 0.000000000000000
58 | 0.967 0.000000000000000 1.000000000000000 0.000000000000000
57 | 0.950 0.000000000000000 1.000000000000000 0.000000000000000
56 | 0.933 0.000000000000000 1.000000000000000 0.000000000000000
55 | 0.917 0.000000000000000 1.000000000000000 0.000000000000000
54 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
53 | 0.883 0.000000000000000 1.000000000000000 0.000000000000000
52 | 0.867 0.000000000000000 1.000000000000000 0.000000000000000
51 | 0.850 0.000000000000000 1.000000000000000 0.000000000000000
50 | 0.833 0.000000000000000 1.000000000000000 0.000000000000000
49 | 0.817 0.000000000000000 1.000000000000000 0.000000000000000
48 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
47 | 0.783 0.000000000000000 1.000000000000000 0.000000000000000
46 | 0.767 0.000000000000000 1.000000000000000 0.000000000000000
45 | 0.750 0.000000000000000 1.000000000000000 0.000000000000000
44 | 0.733 0.000000000000000 1.000000000000000 0.000000000000000
43 | 0.717 0.000000000000000 1.000000000000000 0.000000000000000
42 | 0.700 0.000000000000000 1.000000000000000 0.000000000000000
41 | 0.683 0.000000000000000 1.000000000000000 0.000000000000000
40 | 0.667 0.000000000000000 1.000000000000000 0.000000000000000
39 | 0.650 0.000000000000000 1.000000000000000 0.000000000000000
38 | 0.633 0.000000000000000 1.000000000000000 0.000000000000000
37 | 0.617 0.000000000000000 1.000000000000000 0.000000000000000
36 | 0.600 0.000000000000000 1.000000000000000 0.000000000000000
35 | 0.583 0.000000000000000 1.000000000000000 0.000000000000000
34 | 0.567 0.000000000000001 1.000000000000000 0.000000000000001
33 | 0.550 0.000000000000040 0.999999999999999 0.000000000000041
32 | 0.533 0.000000000002051 0.999999999999959 0.000000000002092
31 | 0.517 0.000000000095037 0.999999999997908 0.000000000097129
30 | 0.500 0.000000004026393 0.999999999902871 0.000000004123522
29 | 0.483 0.000000155860372 0.999999995876478 0.000000159983893
28 | 0.467 0.000002754345006 0.999999840016107 0.000002914328900
27 | 0.450 0.000029602253401 0.999997085671100 0.000032516582300
26 | 0.433 0.000217445964318 0.999967483417700 0.000249962546618
25 | 0.417 0.001163025272010 0.999750037453382 0.001412987818629
24 |% 0.400 0.004711329226894 0.998587012181371 0.006124317045523
23 |%%% 0.383 0.014843415633767 0.993875682954477 0.020967732679290
22 |%%%%%%%% 0.367 0.037059712059306 0.979032267320710 0.058027444738595
21 |%%%%%%%%%%%%%%%% 0.350 0.074330590569092 0.941972555261404 0.132358035307687
20 |%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.333 0.120973036151197 0.867641964692313 0.253331071458885
19 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.317 0.160939737673433 0.746668928541115 0.414270809132318
18 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.300 0.175948006861233 0.585729190867682 0.590218815993551
17 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.283 0.158636485613706 0.409781184006449 0.748855301607257
16 |%%%%%%%%%%%%%%%%%%%%%%%%%% 0.267 0.118204783923200 0.251144698392743 0.867060085530456
15 |%%%%%%%%%%%%%%%% 0.250 0.072849170536372 0.132939914469544 0.939909256066828
14 |%%%%%%%% 0.233 0.037117444227092 0.060090743933172 0.977026700293920
13 |%%% 0.217 0.015608837622407 0.022973299706080 0.992635537916326
12 |% 0.200 0.005401669501273 0.007364462083674 0.998037207417599
11 | 0.183 0.001531730127106 0.001962792582401 0.999568937544705
10 | 0.167 0.000353829659362 0.000431062455295 0.999922767204067
9 | 0.150 0.000066074632934 0.000077232795933 0.999988841837001
8 | 0.0000 0.133 0.000009876540412 0.000011158162999 0.999998718377413
7 | 0.117 0.000001166711911 0.000001281622587 0.999999885089324
6 | 0.100 0.000000107128640 0.000000114910676 0.999999992217964
5 | 0.083 0.000000007479527 0.000000007782036 0.999999999697491
4 | 0.067 0.000000000385278 0.000000000302509 1.000000000082769
3 | 0.050 0.000000000014019 -0.000000000082768 1.000000000096788
2 | 0.033 0.000000000000337 -0.000000000096788 1.000000000097124
1 | 0.017 0.000000000000005 -0.000000000097124 1.000000000097129
0 | 0.000 0.000000000000000 -0.000000000097129 1.000000000097129
Hypergeometric Point Probability k P= 0.000009876540412
Hypergeometric kum. Probability <=k <p= 0.000011158260129
Hypergeometric kum. Probability >k >p= 0.999988841739871
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:32:54;
k(A)= 20, n(A)= 60, N= 100, K(A)= 30
i P(i) Pi <pi >pi
60 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
59 | 0.983 0.000000000000000 1.000000000000000 0.000000000000000
58 | 0.967 0.000000000000000 1.000000000000000 0.000000000000000
57 | 0.950 0.000000000000000 1.000000000000000 0.000000000000000
56 | 0.933 0.000000000000000 1.000000000000000 0.000000000000000
55 | 0.917 0.000000000000000 1.000000000000000 0.000000000000000
54 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
53 | 0.883 0.000000000000000 1.000000000000000 0.000000000000000
52 | 0.867 0.000000000000000 1.000000000000000 0.000000000000000
51 | 0.850 0.000000000000000 1.000000000000000 0.000000000000000
50 | 0.833 0.000000000000000 1.000000000000000 0.000000000000000
49 | 0.817 0.000000000000000 1.000000000000000 0.000000000000000
48 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
47 | 0.783 0.000000000000000 1.000000000000000 0.000000000000000
46 | 0.767 0.000000000000000 1.000000000000000 0.000000000000000
45 | 0.750 0.000000000000000 1.000000000000000 0.000000000000000
44 | 0.733 0.000000000000000 1.000000000000000 0.000000000000000
43 | 0.717 0.000000000000000 1.000000000000000 0.000000000000000
42 | 0.700 0.000000000000000 1.000000000000000 0.000000000000000
41 | 0.683 0.000000000000000 1.000000000000000 0.000000000000000
40 | 0.667 0.000000000000000 1.000000000000000 0.000000000000000
39 | 0.650 0.000000000000000 1.000000000000000 0.000000000000000
38 | 0.633 0.000000000000000 1.000000000000000 0.000000000000000
37 | 0.617 0.000000000000000 1.000000000000000 0.000000000000000
36 | 0.600 0.000000000000000 1.000000000000000 0.000000000000000
35 | 0.583 0.000000000000000 1.000000000000000 0.000000000000000
34 | 0.567 0.000000000000001 1.000000000000000 0.000000000000001
33 | 0.550 0.000000000000040 0.999999999999999 0.000000000000041
32 | 0.533 0.000000000002051 0.999999999999959 0.000000000002092
31 | 0.517 0.000000000095037 0.999999999997908 0.000000000097129
30 | 0.500 0.000000004026393 0.999999999902871 0.000000004123522
29 | 0.483 0.000000155860372 0.999999995876478 0.000000159983893
28 | 0.467 0.000002754345006 0.999999840016107 0.000002914328900
27 | 0.450 0.000029602253401 0.999997085671100 0.000032516582300
26 | 0.433 0.000217445964318 0.999967483417700 0.000249962546618
25 | 0.417 0.001163025272010 0.999750037453382 0.001412987818629
24 |% 0.400 0.004711329226894 0.998587012181371 0.006124317045523
23 |%%% 0.383 0.014843415633767 0.993875682954477 0.020967732679290
22 |%%%%%%%% 0.367 0.037059712059306 0.979032267320710 0.058027444738595
21 |%%%%%%%%%%%%%%%% 0.350 0.074330590569092 0.941972555261404 0.132358035307687
20 |___________________________ 0.1210 0.333 0.120973036151197 0.867641964692313 0.253331071458885
19 ||||||||||||||||||||||||||||||||||||| 0.317 0.160939737673433 0.746668928541115 0.414270809132318
18 ||||||||||||||||||||||||||||||||||||||||| 0.300 0.175948006861233 0.585729190867682 0.590218815993551
17 ||||||||||||||||||||||||||||||||||||| 0.283 0.158636485613706 0.409781184006449 0.748855301607257
16 ||||||||||||||||||||||||||| 0.267 0.118204783923200 0.251144698392743 0.867060085530456
15 ||||||||||||||||| 0.250 0.072849170536372 0.132939914469544 0.939909256066828
14 ||||||||| 0.233 0.037117444227092 0.060090743933172 0.977026700293920
13 |||| 0.217 0.015608837622407 0.022973299706080 0.992635537916326
12 || 0.200 0.005401669501273 0.007364462083674 0.998037207417599
11 | 0.183 0.001531730127106 0.001962792582401 0.999568937544705
10 | 0.167 0.000353829659362 0.000431062455295 0.999922767204067
9 | 0.150 0.000066074632934 0.000077232795933 0.999988841837001
8 | 0.133 0.000009876540412 0.000011158162999 0.999998718377413
7 | 0.117 0.000001166711911 0.000001281622587 0.999999885089324
6 | 0.100 0.000000107128640 0.000000114910676 0.999999992217964
5 | 0.083 0.000000007479527 0.000000007782036 0.999999999697491
4 | 0.067 0.000000000385278 0.000000000302509 1.000000000082769
3 | 0.050 0.000000000014019 -0.000000000082768 1.000000000096788
2 | 0.033 0.000000000000337 -0.000000000096788 1.000000000097124
1 | 0.017 0.000000000000005 -0.000000000097124 1.000000000097129
0 | 0.000 0.000000000000000 -0.000000000097129 1.000000000097129
Hypergeometric Point Probability k P= 0.120973036151197
Hypergeometric kum. Probability <=k <p= 0.867641964789442
Hypergeometric kum. Probability >k >p= 0.132358035210558
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:33:08;
k(A)= 20, n(A)= 160, N= 100, K(A)= 30
i P(i) Pi <pi >pi
160 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
159 | 0.994 0.000000000000000 1.000000000000000 0.000000000000000
158 | 0.988 0.000000000000000 1.000000000000000 0.000000000000000
157 | 0.981 0.000000000000000 1.000000000000000 0.000000000000000
156 | 0.975 0.000000000000000 1.000000000000000 0.000000000000000
155 | 0.969 0.000000000000000 1.000000000000000 0.000000000000000
154 | 0.963 0.000000000000000 1.000000000000000 0.000000000000000
153 | 0.956 0.000000000000000 1.000000000000000 0.000000000000000
152 | 0.950 0.000000000000000 1.000000000000000 0.000000000000000
151 | 0.944 0.000000000000000 1.000000000000000 0.000000000000000
150 | 0.938 0.000000000000000 1.000000000000000 0.000000000000000
149 | 0.931 0.000000000000000 1.000000000000000 0.000000000000000
148 | 0.925 0.000000000000000 1.000000000000000 0.000000000000000
147 | 0.919 0.000000000000000 1.000000000000000 0.000000000000000
146 | 0.912 0.000000000000000 1.000000000000000 0.000000000000000
145 | 0.906 0.000000000000000 1.000000000000000 0.000000000000000
144 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
143 | 0.894 0.000000000000000 1.000000000000000 0.000000000000000
142 | 0.887 0.000000000000000 1.000000000000000 0.000000000000000
141 | 0.881 0.000000000000000 1.000000000000000 0.000000000000000
140 | 0.875 0.000000000000000 1.000000000000000 0.000000000000000
139 | 0.869 0.000000000000000 1.000000000000000 0.000000000000000
138 | 0.863 0.000000000000000 1.000000000000000 0.000000000000000
137 | 0.856 0.000000000000000 1.000000000000000 0.000000000000000
136 | 0.850 0.000000000000000 1.000000000000000 0.000000000000000
135 | 0.844 0.000000000000000 1.000000000000000 0.000000000000000
134 | 0.838 0.000000000000000 1.000000000000000 0.000000000000000
133 | 0.831 0.000000000000000 1.000000000000000 0.000000000000000
132 | 0.825 0.000000000000000 1.000000000000000 0.000000000000000
131 | 0.819 0.000000000000000 1.000000000000000 0.000000000000000
130 | 0.813 0.000000000000000 1.000000000000000 0.000000000000000
129 | 0.806 0.000000000000000 1.000000000000000 0.000000000000000
128 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
127 | 0.794 0.000000000000000 1.000000000000000 0.000000000000000
126 | 0.787 0.000000000000000 1.000000000000000 0.000000000000000
125 | 0.781 0.000000000000000 1.000000000000000 0.000000000000000
124 | 0.775 0.000000000000000 1.000000000000000 0.000000000000000
123 | 0.769 0.000000000000000 1.000000000000000 0.000000000000000
122 | 0.762 0.000000000000000 1.000000000000000 0.000000000000000
121 | 0.756 0.000000000000000 1.000000000000000 0.000000000000000
120 | 0.750 0.000000000000000 1.000000000000000 0.000000000000000
119 | 0.744 0.000000000000000 1.000000000000000 0.000000000000000
118 | 0.738 0.000000000000000 1.000000000000000 0.000000000000000
117 | 0.731 0.000000000000006 1.000000000000000 0.000000000000006
116 | 0.725 0.000000000000441 0.999999999999994 0.000000000000447
115 | 0.719 0.000000000029575 0.999999999999552 0.000000000030022
114 | 0.713 0.000000001848419 0.999999999969978 0.000000001878441
113 | 0.706 0.000000107601575 0.999999998121559 0.000000109480016
112 | 0.700 0.000005826176937 0.999999890519984 0.000005935656953
111 | 0.694 0.000292973468823 0.999994064343047 0.000298909125776
110 | 0.688 0.013658423116535 0.999701090874224 0.013957332242311
109 | 0.681 0.589186879536822 0.986042667757689 0.603144211779133
108 | 0.675 23.465500529245340 0.396855788220869 24.068644741024471
107 | 0.669 860.696849600998800 -23.068644741024514 884.765494342023320
106 | 0.662 28992.732767115122000 -883.765494342023890 29877.498261457145000
105 | 0.656 894030.450418677300000 -29876.498261457193000 923907.948680134490000
104 | 0.650 25144606.418025300000000 -923906.948680132630000 26068514.366705433000000
103 | 0.644 642290297.274470690000000 -26068513.366705418000000 668358811.641176100000000
102 | 0.637 14828046690.526142000000000 -668358810.641176220000000 15496405502.167318000000000
101 | 0.631 307619138122.101680000000000 -15496405501.167297000000000 323115543624.268980000000000
100 | 0.625 5696081040894.249000000000000 -323115543623.268550000000000 6019196584518.517600000000000
99 | 0.619 93378377719577.875000000000000 -6019196584517.515600000000000 99397574304096.391000000000000
98 | 0.613 1341937654002320.500000000000000 -99397574304095.500000000000000 1441335228306417.000000000000000
97 | 0.606 16699668583139992.000000000000000 -1441335228306416.000000000000000 18141003811446408.000000000000000
96 | 0.600 177173046374250850.000000000000000 -18141003811446400.000000000000000 195314050185697250.000000000000000
95 | 0.594 1570025764793361400.000000000000000 -195314050185697280.000000000000000 1765339814979058700.000000000000000
94 | 0.588 11299427852679496000.000000000000000 -1765339814979059700.000000000000000 13064767667658555000.000000000000000
93 | 0.581 63411714516529701000.000000000000000 -13064767667658564000.000000000000000 76476482184188264000.000000000000000
92 |%%% 0.575 260174534560467450000.000000000000000 -76476482184188264000.000000000000000 336651016744655720000.000000000000000
91 |%%%%%%%% 0.569 693798758827913250000.000000000000000 -336651016744655780000.000000000000000 1030449775572569000000.000000000000000
90 |%%%%%%%%%%% 0.563 901938386476287260000.000000000000000 -1030449775572569200000.000000000000000 1932388162048856400000.000000000000000
89 |%%%%%%%%%%%%%% 0.556 1143302180040364100000.000000000000000 -1932388162048856400000.000000000000000 3075690342089220400000.000000000000000
88 |%%%%%%%%%%%%%%%%%% 0.550 1413248528105450000000.000000000000000 -3075690342089220400000.000000000000000 4488938870194670400000.000000000000000
87 |%%%%%%%%%%%%%%%%%%%%% 0.544 1703642061277803100000.000000000000000 -4488938870194670400000.000000000000000 6192580931472473500000.000000000000000
86 |%%%%%%%%%%%%%%%%%%%%%%%%% 0.537 2002930531502281700000.000000000000000 -6192580931472473500000.000000000000000 8195511462974755700000.000000000000000
85 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.531 2296693676122616100000.000000000000000 -8195511462974756700000.000000000000000 10492205139097373000000.000000000000000
84 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.525 2568670558821346700000.000000000000000 -10492205139097373000000.000000000000000 13060875697918719000000.000000000000000
83 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.519 2802186064168742300000.000000000000000 -13060875697918719000000.000000000000000 15863061762087462000000.000000000000000
82 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.512 2981813375974431500000.000000000000000 -15863061762087462000000.000000000000000 18844875138061893000000.000000000000000
81 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.506 3095046795315232400000.000000000000000 -18844875138061893000000.000000000000000 21939921933377124000000.000000000000000
80 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.500 3133734880256673200000.000000000000000 -21939921933377124000000.000000000000000 25073656813633797000000.000000000000000
79 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.494 3095046795315232400000.000000000000000 -25073656813633797000000.000000000000000 28168703608949028000000.000000000000000
78 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.487 2981813375974431500000.000000000000000 -28168703608949028000000.000000000000000 31150516984923459000000.000000000000000
77 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.481 2802186064168742300000.000000000000000 -31150516984923459000000.000000000000000 33952703049092200000000.000000000000000
76 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.475 2568670558821347200000.000000000000000 -33952703049092200000000.000000000000000 36521373607913547000000.000000000000000
75 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.469 2296693676122616600000.000000000000000 -36521373607913551000000.000000000000000 38818067284036166000000.000000000000000
74 |%%%%%%%%%%%%%%%%%%%%%%%%% 0.463 2002930531502281700000.000000000000000 -38818067284036166000000.000000000000000 40820997815538450000000.000000000000000
73 |%%%%%%%%%%%%%%%%%%%%% 0.456 1703642061277803100000.000000000000000 -40820997815538450000000.000000000000000 42524639876816250000000.000000000000000
72 |%%%%%%%%%%%%%%%%%% 0.450 1413248528105450000000.000000000000000 -42524639876816250000000.000000000000000 43937888404921700000000.000000000000000
71 |%%%%%%%%%%%%%% 0.444 1143302180040364100000.000000000000000 -43937888404921700000000.000000000000000 45081190584962062000000.000000000000000
70 |%%%%%%%%%%% 0.438 901938386476287390000.000000000000000 -45081190584962062000000.000000000000000 45983128971438348000000.000000000000000
69 |%%%%%%%% 0.431 693798758827913120000.000000000000000 -45983128971438348000000.000000000000000 46676927730266258000000.000000000000000
68 |%%%%%% 0.425 520349069120934900000.000000000000000 -46676927730266258000000.000000000000000 47197276799387193000000.000000000000000
67 |%%%% 0.419 380470287099178250000.000000000000000 -47197276799387193000000.000000000000000 47577747086486373000000.000000000000000
66 |%%% 0.412 271186268464307900000.000000000000000 -47577747086486373000000.000000000000000 47848933354950684000000.000000000000000
65 |%% 0.406 188403091775203380000.000000000000000 -47848933354950684000000.000000000000000 48037336446725891000000.000000000000000
64 |% 0.400 127564593389460620000.000000000000000 -48037336446725891000000.000000000000000 48164901040115352000000.000000000000000
63 |% 0.394 84166329659025572000.000000000000000 -48164901040115352000000.000000000000000 48249067369774375000000.000000000000000
62 | 0.388 54106926209373577000.000000000000000 -48249067369774375000000.000000000000000 48303174295983749000000.000000000000000
61 | 0.381 33885145706880414000.000000000000000 -48303174295983749000000.000000000000000 48337059441690630000000.000000000000000
60 | 0.375 20669938881197052000.000000000000000 -48337059441690630000000.000000000000000 48357729380571831000000.000000000000000
59 | 0.369 12279171612592310000.000000000000000 -48357729380571831000000.000000000000000 48370008552184421000000.000000000000000
58 | 0.362 7102658089636727800.000000000000000 -48370008552184421000000.000000000000000 48377111210274060000000.000000000000000
57 | 0.356 3999555040766312400.000000000000000 -48377111210274060000000.000000000000000 48381110765314827000000.000000000000000
56 | 0.350 2192063820419998500.000000000000000 -48381110765314827000000.000000000000000 48383302829135245000000.000000000000000
55 | 0.344 1169100704223999000.000000000000000 -48383302829135245000000.000000000000000 48384471929839470000000.000000000000000
54 | 0.338 606608855965282560.000000000000000 -48384471929839470000000.000000000000000 48385078538695436000000.000000000000000
53 | 0.331 306139048804908930.000000000000000 -48385078538695436000000.000000000000000 48385384677744243000000.000000000000000
52 | 0.325 150234903580186820.000000000000000 -48385384677744243000000.000000000000000 48385534912647827000000.000000000000000
51 | 0.319 71671697120823072.000000000000000 -48385534912647827000000.000000000000000 48385606584344951000000.000000000000000
50 | 0.313 33229605028745240.000000000000000 -48385606584344951000000.000000000000000 48385639813949984000000.000000000000000
49 | 0.306 14968290553488848.000000000000000 -48385639813949984000000.000000000000000 48385654782240540000000.000000000000000
48 | 0.300 6548627117151371.000000000000000 -48385654782240540000000.000000000000000 48385661330867656000000.000000000000000
47 | 0.294 2781717713480228.500000000000000 -48385661330867656000000.000000000000000 48385664112585366000000.000000000000000
46 | 0.287 1146848530996234.500000000000000 -48385664112585366000000.000000000000000 48385665259433900000000.000000000000000
45 | 0.281 458739412398493.750000000000000 -48385665259433900000000.000000000000000 48385665718173309000000.000000000000000
44 | 0.275 177959254809760.530000000000000 -48385665718173309000000.000000000000000 48385665896132561000000.000000000000000
43 | 0.269 66924847962644.969000000000000 -48385665896132561000000.000000000000000 48385665963057413000000.000000000000000
42 | 0.263 24387868325370.629000000000000 -48385665963057413000000.000000000000000 48385665987445277000000.000000000000000
41 | 0.256 8607482938366.104500000000000 -48385665987445277000000.000000000000000 48385665996052761000000.000000000000000
40 | 0.250 2940890003941.752400000000000 -48385665996052761000000.000000000000000 48385665998993647000000.000000000000000
39 | 0.244 972195042625.372800000000000 -48385665998993647000000.000000000000000 48385665999965845000000.000000000000000
38 | 0.237 310783661167.127380000000000 -48385665999965845000000.000000000000000 48385666000276626000000.000000000000000
37 | 0.231 96014464425.616547000000000 -48385666000276626000000.000000000000000 48385666000372642000000.000000000000000
36 | 0.225 28649477288.288815000000000 -48385666000372642000000.000000000000000 48385666000401289000000.000000000000000
35 | 0.219 8251049459.027177800000000 -48385666000401289000000.000000000000000 48385666000409544000000.000000000000000
34 | 0.212 2291958183.063104600000000 -48385666000409544000000.000000000000000 48385666000411834000000.000000000000000
33 | 0.206 613595104.127130510000000 -48385666000411834000000.000000000000000 48385666000412446000000.000000000000000
32 | 0.200 158192487.782775820000000 -48385666000412446000000.000000000000000 48385666000412605000000.000000000000000
31 | 0.194 39241547.356967643000000 -48385666000412605000000.000000000000000 48385666000412647000000.000000000000000
30 | 0.188 9357599.754353823100000 -48385666000412647000000.000000000000000 48385666000412656000000.000000000000000
29 | 0.181 2142961.775806219300000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
28 | 0.175 235401.104160531630000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
27 | 0.169 16519.375730563625000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
26 | 0.163 832.132732696301900 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
25 | 0.156 32.052520074227921 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
24 | 0.150 0.982001227764336 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
23 | 0.144 0.024575630309014 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
22 | 0.138 0.000511992298104 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
21 | 0.131 0.000009003861358 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
20 | 0.0000 0.125 0.000000135057920 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
19 | 0.119 0.000000001741559 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
18 | 0.113 0.000000000019419 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
17 | 0.106 0.000000000000188 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
16 | 0.100 0.000000000000002 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
15 | 0.094 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
14 | 0.087 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
13 | 0.081 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
12 | 0.075 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
11 | 0.069 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
10 | 0.063 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
9 | 0.056 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
8 | 0.050 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
7 | 0.044 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
6 | 0.037 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
5 | 0.031 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
4 | 0.025 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
3 | 0.019 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
2 | 0.013 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
1 | 0.006 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
0 | 0.000 0.000000000000000 -48385666000412656000000.000000000000000 48385666000412656000000.000000000000000
Hypergeometric Point Probability k P= 0.000000135057920
Hypergeometric kum. Probability <=k <p= 0.000000136819088
Hypergeometric kum. Probability >k >p= 0.999999863180912
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:33:32;
k(A)= 20, n(A)= 160, N= 220, K(A)= 30
i P(i) Pi <pi >pi
160 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
159 | 0.994 0.000000000000000 1.000000000000000 0.000000000000000
158 | 0.988 0.000000000000000 1.000000000000000 0.000000000000000
157 | 0.981 0.000000000000000 1.000000000000000 0.000000000000000
156 | 0.975 0.000000000000000 1.000000000000000 0.000000000000000
155 | 0.969 0.000000000000000 1.000000000000000 0.000000000000000
154 | 0.963 0.000000000000000 1.000000000000000 0.000000000000000
153 | 0.956 0.000000000000000 1.000000000000000 0.000000000000000
152 | 0.950 0.000000000000000 1.000000000000000 0.000000000000000
151 | 0.944 0.000000000000000 1.000000000000000 0.000000000000000
150 | 0.938 0.000000000000000 1.000000000000000 0.000000000000000
149 | 0.931 0.000000000000000 1.000000000000000 0.000000000000000
148 | 0.925 0.000000000000000 1.000000000000000 0.000000000000000
147 | 0.919 0.000000000000000 1.000000000000000 0.000000000000000
146 | 0.912 0.000000000000000 1.000000000000000 0.000000000000000
145 | 0.906 0.000000000000000 1.000000000000000 0.000000000000000
144 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
143 | 0.894 0.000000000000000 1.000000000000000 0.000000000000000
142 | 0.887 0.000000000000000 1.000000000000000 0.000000000000000
141 | 0.881 0.000000000000000 1.000000000000000 0.000000000000000
140 | 0.875 0.000000000000000 1.000000000000000 0.000000000000000
139 | 0.869 0.000000000000000 1.000000000000000 0.000000000000000
138 | 0.863 0.000000000000000 1.000000000000000 0.000000000000000
137 | 0.856 0.000000000000000 1.000000000000000 0.000000000000000
136 | 0.850 0.000000000000000 1.000000000000000 0.000000000000000
135 | 0.844 0.000000000000000 1.000000000000000 0.000000000000000
134 | 0.838 0.000000000000000 1.000000000000000 0.000000000000000
133 | 0.831 0.000000000000000 1.000000000000000 0.000000000000000
132 | 0.825 0.000000000000000 1.000000000000000 0.000000000000000
131 | 0.819 0.000000000000000 1.000000000000000 0.000000000000000
130 | 0.813 0.000000000000000 1.000000000000000 0.000000000000000
129 | 0.806 0.000000000000000 1.000000000000000 0.000000000000000
128 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
127 | 0.794 0.000000000000000 1.000000000000000 0.000000000000000
126 | 0.787 0.000000000000000 1.000000000000000 0.000000000000000
125 | 0.781 0.000000000000000 1.000000000000000 0.000000000000000
124 | 0.775 0.000000000000000 1.000000000000000 0.000000000000000
123 | 0.769 0.000000000000000 1.000000000000000 0.000000000000000
122 | 0.762 0.000000000000000 1.000000000000000 0.000000000000000
121 | 0.756 0.000000000000000 1.000000000000000 0.000000000000000
120 | 0.750 0.000000000000000 1.000000000000000 0.000000000000000
119 | 0.744 0.000000000000000 1.000000000000000 0.000000000000000
118 | 0.738 0.000000000000000 1.000000000000000 0.000000000000000
117 | 0.731 0.000000000000000 1.000000000000000 0.000000000000000
116 | 0.725 0.000000000000000 1.000000000000000 0.000000000000000
115 | 0.719 0.000000000000000 1.000000000000000 0.000000000000000
114 | 0.713 0.000000000000000 1.000000000000000 0.000000000000000
113 | 0.706 0.000000000000000 1.000000000000000 0.000000000000000
112 | 0.700 0.000000000000000 1.000000000000000 0.000000000000000
111 | 0.694 0.000000000000000 1.000000000000000 0.000000000000000
110 | 0.688 0.000000000000000 1.000000000000000 0.000000000000000
109 | 0.681 0.000000000000000 1.000000000000000 0.000000000000000
108 | 0.675 0.000000000000000 1.000000000000000 0.000000000000000
107 | 0.669 0.000000000000000 1.000000000000000 0.000000000000000
106 | 0.662 0.000000000000000 1.000000000000000 0.000000000000000
105 | 0.656 0.000000000000000 1.000000000000000 0.000000000000000
104 | 0.650 0.000000000000000 1.000000000000000 0.000000000000000
103 | 0.644 0.000000000000000 1.000000000000000 0.000000000000000
102 | 0.637 0.000000000000000 1.000000000000000 0.000000000000000
101 | 0.631 0.000000000000000 1.000000000000000 0.000000000000000
100 | 0.625 0.000000000000000 1.000000000000000 0.000000000000000
99 | 0.619 0.000000000000000 1.000000000000000 0.000000000000000
98 | 0.613 0.000000000000000 1.000000000000000 0.000000000000000
97 | 0.606 0.000000000000000 1.000000000000000 0.000000000000000
96 | 0.600 0.000000000000000 1.000000000000000 0.000000000000000
95 | 0.594 0.000000000000000 1.000000000000000 0.000000000000000
94 | 0.588 0.000000000000000 1.000000000000000 0.000000000000000
93 | 0.581 0.000000000000000 1.000000000000000 0.000000000000000
92 | 0.575 0.000000000000000 1.000000000000000 0.000000000000000
91 | 0.569 0.000000000000000 1.000000000000000 0.000000000000000
90 | 0.563 0.000000000000000 1.000000000000000 0.000000000000000
89 | 0.556 0.000000000000000 1.000000000000000 0.000000000000000
88 | 0.550 0.000000000000000 1.000000000000000 0.000000000000000
87 | 0.544 0.000000000000000 1.000000000000000 0.000000000000000
86 | 0.537 0.000000000000000 1.000000000000000 0.000000000000000
85 | 0.531 0.000000000000000 1.000000000000000 0.000000000000000
84 | 0.525 0.000000000000000 1.000000000000000 0.000000000000000
83 | 0.519 0.000000000000000 1.000000000000000 0.000000000000000
82 | 0.512 0.000000000000000 1.000000000000000 0.000000000000000
81 | 0.506 0.000000000000000 1.000000000000000 0.000000000000000
80 | 0.500 0.000000000000000 1.000000000000000 0.000000000000000
79 | 0.494 0.000000000000000 1.000000000000000 0.000000000000000
78 | 0.487 0.000000000000000 1.000000000000000 0.000000000000000
77 | 0.481 0.000000000000000 1.000000000000000 0.000000000000000
76 | 0.475 0.000000000000000 1.000000000000000 0.000000000000000
75 | 0.469 0.000000000000000 1.000000000000000 0.000000000000000
74 | 0.463 0.000000000000000 1.000000000000000 0.000000000000000
73 | 0.456 0.000000000000000 1.000000000000000 0.000000000000000
72 | 0.450 0.000000000000000 1.000000000000000 0.000000000000000
71 | 0.444 0.000000000000000 1.000000000000000 0.000000000000000
70 | 0.438 0.000000000000000 1.000000000000000 0.000000000000000
69 | 0.431 0.000000000000000 1.000000000000000 0.000000000000000
68 | 0.425 0.000000000000000 1.000000000000000 0.000000000000000
67 | 0.419 0.000000000000000 1.000000000000000 0.000000000000000
66 | 0.412 0.000000000000000 1.000000000000000 0.000000000000000
65 | 0.406 0.000000000000000 1.000000000000000 0.000000000000000
64 | 0.400 0.000000000000000 1.000000000000000 0.000000000000000
63 | 0.394 0.000000000000000 1.000000000000000 0.000000000000000
62 | 0.388 0.000000000000000 1.000000000000000 0.000000000000000
61 | 0.381 0.000000000000000 1.000000000000000 0.000000000000000
60 | 0.375 0.000000000000000 1.000000000000000 0.000000000000000
59 | 0.369 0.000000000000000 1.000000000000000 0.000000000000000
58 | 0.362 0.000000000000000 1.000000000000000 0.000000000000000
57 | 0.356 0.000000000000000 1.000000000000000 0.000000000000000
56 | 0.350 0.000000000000000 1.000000000000000 0.000000000000000
55 | 0.344 0.000000000000000 1.000000000000000 0.000000000000000
54 | 0.338 0.000000000000000 1.000000000000000 0.000000000000000
53 | 0.331 0.000000000000000 1.000000000000000 0.000000000000000
52 | 0.325 0.000000000000000 1.000000000000000 0.000000000000000
51 | 0.319 0.000000000000000 1.000000000000000 0.000000000000000
50 | 0.313 0.000000000000000 1.000000000000000 0.000000000000000
49 | 0.306 0.000000000000000 1.000000000000000 0.000000000000000
48 | 0.300 0.000000000000000 1.000000000000000 0.000000000000000
47 | 0.294 0.000000000000000 1.000000000000000 0.000000000000000
46 | 0.287 0.000000000000000 1.000000000000000 0.000000000000000
45 | 0.281 0.000000000000000 1.000000000000000 0.000000000000000
44 | 0.275 0.000000000000000 1.000000000000000 0.000000000000000
43 | 0.269 0.000000000000000 1.000000000000000 0.000000000000000
42 | 0.263 0.000000000000000 1.000000000000000 0.000000000000000
41 | 0.256 0.000000000000000 1.000000000000000 0.000000000000000
40 | 0.250 0.000000000000000 1.000000000000000 0.000000000000000
39 | 0.244 0.000000000000000 1.000000000000000 0.000000000000000
38 | 0.237 0.000000000000003 1.000000000000000 0.000000000000004
37 | 0.231 0.000000000000072 0.999999999999996 0.000000000000076
36 | 0.225 0.000000000001446 0.999999999999924 0.000000000001522
35 | 0.219 0.000000000027490 0.999999999998478 0.000000000029012
34 | 0.212 0.000000000496345 0.999999999970988 0.000000000525357
33 | 0.206 0.000000008504303 0.999999999474643 0.000000009029660
32 | 0.200 0.000000138128483 0.999999990970340 0.000000147158143
31 | 0.194 0.000002124394654 0.999999852841857 0.000002271552797
30 | 0.188 0.000030901771463 0.999997728447203 0.000033173324260
29 | 0.181 0.000424604493386 0.999966826675740 0.000457777817646
28 | 0.175 0.002751887455242 0.999542222182354 0.003209665272888
27 |%% 0.169 0.011200664730107 0.996790334727112 0.014410330002995
26 |%%%%%%% 0.163 0.032160117573946 0.985589669997005 0.046570447576941
25 |%%%%%%%%%%%%%%% 0.156 0.069370564722468 0.953429552423059 0.115941012299409
24 |%%%%%%%%%%%%%%%%%%%%%%%%%% 0.150 0.116892802075237 0.884058987700591 0.232833814374646
23 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.144 0.157969834712729 0.767166185625354 0.390803649087374
22 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.138 0.174425025828638 0.609196350912626 0.565228674916012
21 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.131 0.159506178695413 0.434771325083988 0.724734853611425
20 |___________________________ 0.1220 0.125 0.122022226701991 0.275265146388575 0.846757080313416
19 ||||||||||||||||||| 0.119 0.078673260284972 0.153242919686584 0.925430340598388
18 |||||||||| 0.113 0.042984040683867 0.074569659401612 0.968414381282254
17 ||||| 0.106 0.019977520791211 0.031585618717746 0.988391902073465
16 || 0.100 0.007917678131040 0.011608097926535 0.996309580204505
15 | 0.094 0.002679269473308 0.003690419795495 0.998988849677814
14 | 0.087 0.000774189595241 0.001011150322186 0.999763039273055
13 | 0.081 0.000190836650928 0.000236960726945 0.999953875923982
12 | 0.075 0.000040044177128 0.000046124076018 0.999993920101110
11 | 0.069 0.000007129023410 0.000006079898890 1.000001049124520
10 | 0.063 0.000001071729853 -0.000001049124520 1.000002120854373
9 | 0.056 0.000000135191404 -0.000002120854373 1.000002256045776
8 | 0.050 0.000000014190246 -0.000002256045776 1.000002270236022
7 | 0.044 0.000000001225870 -0.000002270236022 1.000002271461892
6 | 0.037 0.000000000085904 -0.000002271461892 1.000002271547795
5 | 0.031 0.000000000004788 -0.000002271547795 1.000002271552584
4 | 0.025 0.000000000000207 -0.000002271552584 1.000002271552790
3 | 0.019 0.000000000000007 -0.000002271552790 1.000002271552797
2 | 0.013 0.000000000000000 -0.000002271552797 1.000002271552797
1 | 0.006 0.000000000000000 -0.000002271552797 1.000002271552797
0 | 0.000 0.000000000000000 -0.000002271552797 1.000002271552797
Hypergeometric Point Probability k P= 0.122022226701991
Hypergeometric kum. Probability <=k <p= 0.275267417941372
Hypergeometric kum. Probability >k >p= 0.724732582058628
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:33:57;
k(A)= 20, n(A)= 60, N= 100, K(A)= 30
i P(i) Pi <pi >pi
60 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
59 | 0.983 0.000000000000000 1.000000000000000 0.000000000000000
58 | 0.967 0.000000000000000 1.000000000000000 0.000000000000000
57 | 0.950 0.000000000000000 1.000000000000000 0.000000000000000
56 | 0.933 0.000000000000000 1.000000000000000 0.000000000000000
55 | 0.917 0.000000000000000 1.000000000000000 0.000000000000000
54 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
53 | 0.883 0.000000000000000 1.000000000000000 0.000000000000000
52 | 0.867 0.000000000000000 1.000000000000000 0.000000000000000
51 | 0.850 0.000000000000000 1.000000000000000 0.000000000000000
50 | 0.833 0.000000000000000 1.000000000000000 0.000000000000000
49 | 0.817 0.000000000000000 1.000000000000000 0.000000000000000
48 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
47 | 0.783 0.000000000000000 1.000000000000000 0.000000000000000
46 | 0.767 0.000000000000000 1.000000000000000 0.000000000000000
45 | 0.750 0.000000000000000 1.000000000000000 0.000000000000000
44 | 0.733 0.000000000000000 1.000000000000000 0.000000000000000
43 | 0.717 0.000000000000000 1.000000000000000 0.000000000000000
42 | 0.700 0.000000000000000 1.000000000000000 0.000000000000000
41 | 0.683 0.000000000000000 1.000000000000000 0.000000000000000
40 | 0.667 0.000000000000000 1.000000000000000 0.000000000000000
39 | 0.650 0.000000000000000 1.000000000000000 0.000000000000000
38 | 0.633 0.000000000000000 1.000000000000000 0.000000000000000
37 | 0.617 0.000000000000000 1.000000000000000 0.000000000000000
36 | 0.600 0.000000000000000 1.000000000000000 0.000000000000000
35 | 0.583 0.000000000000000 1.000000000000000 0.000000000000000
34 | 0.567 0.000000000000001 1.000000000000000 0.000000000000001
33 | 0.550 0.000000000000040 0.999999999999999 0.000000000000041
32 | 0.533 0.000000000002051 0.999999999999959 0.000000000002092
31 | 0.517 0.000000000095037 0.999999999997908 0.000000000097129
30 | 0.500 0.000000004026393 0.999999999902871 0.000000004123522
29 | 0.483 0.000000155860372 0.999999995876478 0.000000159983893
28 | 0.467 0.000002754345006 0.999999840016107 0.000002914328900
27 | 0.450 0.000029602253401 0.999997085671100 0.000032516582300
26 | 0.433 0.000217445964318 0.999967483417700 0.000249962546618
25 | 0.417 0.001163025272010 0.999750037453382 0.001412987818629
24 |% 0.400 0.004711329226894 0.998587012181371 0.006124317045523
23 |%%% 0.383 0.014843415633767 0.993875682954477 0.020967732679290
22 |%%%%%%%% 0.367 0.037059712059306 0.979032267320710 0.058027444738595
21 |%%%%%%%%%%%%%%%% 0.350 0.074330590569092 0.941972555261404 0.132358035307687
20 |___________________________ 0.1210 0.333 0.120973036151197 0.867641964692313 0.253331071458885
19 ||||||||||||||||||||||||||||||||||||| 0.317 0.160939737673433 0.746668928541115 0.414270809132318
18 ||||||||||||||||||||||||||||||||||||||||| 0.300 0.175948006861233 0.585729190867682 0.590218815993551
17 ||||||||||||||||||||||||||||||||||||| 0.283 0.158636485613706 0.409781184006449 0.748855301607257
16 ||||||||||||||||||||||||||| 0.267 0.118204783923200 0.251144698392743 0.867060085530456
15 ||||||||||||||||| 0.250 0.072849170536372 0.132939914469544 0.939909256066828
14 ||||||||| 0.233 0.037117444227092 0.060090743933172 0.977026700293920
13 |||| 0.217 0.015608837622407 0.022973299706080 0.992635537916326
12 || 0.200 0.005401669501273 0.007364462083674 0.998037207417599
11 | 0.183 0.001531730127106 0.001962792582401 0.999568937544705
10 | 0.167 0.000353829659362 0.000431062455295 0.999922767204067
9 | 0.150 0.000066074632934 0.000077232795933 0.999988841837001
8 | 0.133 0.000009876540412 0.000011158162999 0.999998718377413
7 | 0.117 0.000001166711911 0.000001281622587 0.999999885089324
6 | 0.100 0.000000107128640 0.000000114910676 0.999999992217964
5 | 0.083 0.000000007479527 0.000000007782036 0.999999999697491
4 | 0.067 0.000000000385278 0.000000000302509 1.000000000082769
3 | 0.050 0.000000000014019 -0.000000000082768 1.000000000096788
2 | 0.033 0.000000000000337 -0.000000000096788 1.000000000097124
1 | 0.017 0.000000000000005 -0.000000000097124 1.000000000097129
0 | 0.000 0.000000000000000 -0.000000000097129 1.000000000097129
Hypergeometric Point Probability k P= 0.120973036151197
Hypergeometric kum. Probability <=k <p= 0.867641964789442
Hypergeometric kum. Probability >k >p= 0.132358035210558
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:34:08;
k(A)= 10, n(A)= 50, N= 100, K(A)= 30
i P(i) Pi <pi >pi
50 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
49 | 0.980 0.000000000000000 1.000000000000000 0.000000000000000
48 | 0.960 0.000000000000000 1.000000000000000 0.000000000000000
47 | 0.940 0.000000000000000 1.000000000000000 0.000000000000000
46 | 0.920 0.000000000000000 1.000000000000000 0.000000000000000
45 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
44 | 0.880 0.000000000000000 1.000000000000000 0.000000000000000
43 | 0.860 0.000000000000000 1.000000000000000 0.000000000000000
42 | 0.840 0.000000000000000 1.000000000000000 0.000000000000000
41 | 0.820 0.000000000000000 1.000000000000000 0.000000000000000
40 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
39 | 0.780 0.000000000000000 1.000000000000000 0.000000000000000
38 | 0.760 0.000000000000000 1.000000000000000 0.000000000000000
37 | 0.740 0.000000000000000 1.000000000000000 0.000000000000000
36 | 0.720 0.000000000000000 1.000000000000000 0.000000000000000
35 | 0.700 0.000000000000000 1.000000000000000 0.000000000000000
34 | 0.680 0.000000000000000 1.000000000000000 0.000000000000000
33 | 0.660 0.000000000000000 1.000000000000000 0.000000000000000
32 | 0.640 0.000000000000000 1.000000000000000 0.000000000000000
31 | 0.620 0.000000000000020 1.000000000000000 0.000000000000021
30 | 0.600 0.000000000001605 0.999999999999979 0.000000000001625
29 | 0.580 0.000000000114610 0.999999999998375 0.000000000116235
28 | 0.560 0.000000003701391 0.999999999883765 0.000000003817627
27 | 0.540 0.000000072096666 0.999999996182373 0.000000075914292
26 | 0.520 0.000000953027800 0.999999924085708 0.000001028942093
25 | 0.500 0.000009118569992 0.999998971057907 0.000010147512085
24 | 0.480 0.000065758918212 0.999989852487915 0.000075906430297
23 | 0.460 0.000367414908108 0.999924093569703 0.000443321338405
22 | 0.440 0.001622202429101 0.999556678661595 0.002065523767506
21 |% 0.420 0.005742969519117 0.997934476232494 0.007808493286624
20 |%%% 0.400 0.016482322519867 0.992191506713376 0.024290815806491
19 |%%%%%%%% 0.380 0.038668205325201 0.975709184193509 0.062959021131692
18 |%%%%%%%%%%%%%%%%% 0.360 0.074617552463475 0.937040978868308 0.137576573595167
17 |%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.340 0.118970643088617 0.862423426404833 0.256547216683784
16 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.320 0.157211206938529 0.743452783316216 0.413758423622313
15 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.300 0.172483152755415 0.586241576377687 0.586241576377728
14 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.280 0.157211206938529 0.413758423622272 0.743452783316257
13 |%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.260 0.118970643088617 0.256547216683743 0.862423426404874
12 |%%%%%%%%%%%%%%%%% 0.240 0.074617552463475 0.137576573595126 0.937040978868349
11 |%%%%%%%% 0.220 0.038668205325201 0.062959021131651 0.975709184193550
10 |___ 0.0165 0.200 0.016482322519867 0.024290815806450 0.992191506713417
9 || 0.180 0.005742969519117 0.007808493286583 0.997934476232535
8 | 0.160 0.001622202429101 0.002065523767465 0.999556678661636
7 | 0.140 0.000367414908108 0.000443321338364 0.999924093569744
6 | 0.120 0.000065758918212 0.000075906430256 0.999989852487957
5 | 0.100 0.000009118569992 0.000010147512043 0.999998971057949
4 | 0.080 0.000000953027800 0.000001028942051 0.999999924085749
3 | 0.060 0.000000072096666 0.000000075914251 0.999999996182415
2 | 0.040 0.000000003701391 0.000000003817585 0.999999999883806
1 | 0.020 0.000000000114610 0.000000000116194 0.999999999998416
0 | 0.000 0.000000000001605 0.000000000001584 1.000000000000021
Hypergeometric Point Probability k P= 0.016482322519867
Hypergeometric kum. Probability <=k <p= 0.024290815806470
Hypergeometric kum. Probability >k >p= 0.975709184193529
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:34:14;
k(A)= 10, n(A)= 40, N= 100, K(A)= 30
i P(i) Pi <pi >pi
40 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
39 | 0.975 0.000000000000000 1.000000000000000 0.000000000000000
38 | 0.950 0.000000000000000 1.000000000000000 0.000000000000000
37 | 0.925 0.000000000000000 1.000000000000000 0.000000000000000
36 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
35 | 0.875 0.000000000000000 1.000000000000000 0.000000000000000
34 | 0.850 0.000000000000000 1.000000000000000 0.000000000000000
33 | 0.825 0.000000000000000 1.000000000000000 0.000000000000000
32 | 0.800 0.000000000000000 1.000000000000000 0.000000000000000
31 | 0.775 0.000000000000000 1.000000000000000 0.000000000000000
30 | 0.750 0.000000000000000 1.000000000000000 0.000000000000000
29 | 0.725 0.000000000000005 1.000000000000000 0.000000000000005
28 | 0.700 0.000000000000337 0.999999999999995 0.000000000000341
27 | 0.675 0.000000000014019 0.999999999999659 0.000000000014361
26 | 0.650 0.000000000385278 0.999999999985639 0.000000000399638
25 | 0.625 0.000000007479527 0.999999999600362 0.000000007879165
24 | 0.600 0.000000107128640 0.999999992120835 0.000000115007805
23 | 0.575 0.000001166711911 0.999999884992195 0.000001281719716
22 | 0.550 0.000009876540412 0.999998718280284 0.000011158260129
21 | 0.525 0.000066074632934 0.999988841739871 0.000077232893063
20 | 0.500 0.000353829659362 0.999922767106938 0.000431062552424
19 | 0.475 0.001531730127106 0.999568937447576 0.001962792679530
18 |% 0.450 0.005401669501273 0.998037207320470 0.007364462180803
17 |%%% 0.425 0.015608837622407 0.992635537819197 0.022973299803210
16 |%%%%%%%% 0.400 0.037117444227092 0.977026700196791 0.060090744030301
15 |%%%%%%%%%%%%%%%% 0.375 0.072849170536372 0.939909255969699 0.132939914566673
14 |%%%%%%%%%%%%%%%%%%%%%%%%%% 0.350 0.118204783923200 0.867060085433327 0.251144698489873
13 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.325 0.158636485613706 0.748855301510127 0.409781184103579
12 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.300 0.175948006861233 0.590218815896421 0.585729190964812
11 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.275 0.160939737673433 0.414270809035188 0.746668928638245
10 |___________________________ 0.1210 0.250 0.120973036151197 0.253331071361755 0.867641964789442
9 ||||||||||||||||| 0.225 0.074330590569092 0.132358035210558 0.941972555358534
8 ||||||||| 0.200 0.037059712059306 0.058027444641466 0.979032267417840
7 |||| 0.175 0.014843415633767 0.020967732582160 0.993875683051606
6 || 0.150 0.004711329226894 0.006124316948394 0.998587012278501
5 | 0.125 0.001163025272010 0.001412987721499 0.999750037550511
4 | 0.100 0.000217445964318 0.000249962449489 0.999967483514829
3 | 0.075 0.000029602253401 0.000032516485171 0.999997085768230
2 | 0.050 0.000002754345006 0.000002914231770 0.999999840113236
1 | 0.025 0.000000155860372 0.000000159886764 0.999999995973608
0 | 0.000 0.000000004026393 0.000000004026392 1.000000000000001
Hypergeometric Point Probability k P= 0.120973036151197
Hypergeometric kum. Probability <=k <p= 0.253331071361756
Hypergeometric kum. Probability >k >p= 0.746668928638244
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:34:24;
k(A)= 10, n(A)= 30, N= 100, K(A)= 30
i P(i) Pi <pi >pi
30 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
29 | 0.967 0.000000000000000 1.000000000000000 0.000000000000000
28 | 0.933 0.000000000000000 1.000000000000000 0.000000000000000
27 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
26 | 0.867 0.000000000000001 1.000000000000000 0.000000000000001
25 | 0.833 0.000000000000059 0.999999999999999 0.000000000000060
24 | 0.800 0.000000000002651 0.999999999999940 0.000000000002710
23 | 0.767 0.000000000083087 0.999999999997290 0.000000000085797
22 | 0.733 0.000000001881146 0.999999999914203 0.000000001966944
21 | 0.700 0.000000031677573 0.999999998033057 0.000000033644517
20 | 0.667 0.000000405789714 0.999999966355483 0.000000439434231
19 | 0.633 0.000004024360802 0.999999560565769 0.000004463795033
18 | 0.600 0.000031328530963 0.999995536204967 0.000035792325996
17 | 0.567 0.000193532463463 0.999964207674004 0.000229324789459
16 | 0.533 0.000956800801510 0.999770675210541 0.001186125590968
15 | 0.500 0.003810193414012 0.998813874409031 0.004996319004980
14 |%% 0.467 0.012278943619373 0.995003680995020 0.017275262624353
13 |%%%%%% 0.433 0.032120696803620 0.982724737375647 0.049395959427973
12 |%%%%%%%%%%%%%% 0.400 0.068306049684241 0.950604040572027 0.117702009112214
11 |%%%%%%%%%%%%%%%%%%%%%%%%% 0.367 0.118069182833702 0.882297990887786 0.235771191945917
10 |___________________________________ 0.1656 0.333 0.165592028924267 0.764228808054083 0.401363220870184
9 ||||||||||||||||||||||||||||||||||||||||| 0.300 0.187746064539986 0.598636779129816 0.589109285410170
8 ||||||||||||||||||||||||||||||||||||| 0.267 0.171066145582921 0.410890714589830 0.760175430993091
7 ||||||||||||||||||||||||||| 0.233 0.124176559364540 0.239824569006909 0.884351990357631
6 |||||||||||||||| 0.200 0.070927236164815 0.115648009642369 0.955279226522446
5 ||||||| 0.167 0.031321467490382 0.044720773477554 0.986600694012829
4 ||| 0.133 0.010425044652864 0.013399305987171 0.997025738665693
3 | 0.100 0.002516883208373 0.002974261334307 0.999542621874066
2 | 0.067 0.000414130017704 0.000457378125934 0.999956751891770
1 | 0.033 0.000041363759200 0.000043248108230 0.999998115650970
0 | 0.000 0.000001884349030 0.000001884349030 1.000000000000000
Hypergeometric Point Probability k P= 0.165592028924267
Hypergeometric kum. Probability <=k <p= 0.764228808054083
Hypergeometric kum. Probability >k >p= 0.235771191945917
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:35:08;
k(A)= 10, n(A)= 50, N= 100, K(A)= 50
i P(i) Pi <pi >pi
50 | 1.000 0.000000000000000 1.000000000000000 0.000000000000000
49 | 0.980 0.000000000000000 1.000000000000000 0.000000000000000
48 | 0.960 0.000000000000000 1.000000000000000 0.000000000000000
47 | 0.940 0.000000000000000 1.000000000000000 0.000000000000000
46 | 0.920 0.000000000000000 1.000000000000000 0.000000000000000
45 | 0.900 0.000000000000000 1.000000000000000 0.000000000000000
44 | 0.880 0.000000000000003 1.000000000000000 0.000000000000003
43 | 0.860 0.000000000000099 0.999999999999997 0.000000000000101
42 | 0.840 0.000000000002857 0.999999999999899 0.000000000002958
41 | 0.820 0.000000000062217 0.999999999997042 0.000000000065176
40 | 0.800 0.000000001045875 0.999999999934824 0.000000001111050
39 | 0.780 0.000000013829747 0.999999998888950 0.000000014940798
38 | 0.760 0.000000146076706 0.999999985059202 0.000000161017504
37 | 0.740 0.000001248134696 0.999999838982496 0.000001409152200
36 | 0.720 0.000008717838770 0.999998590847800 0.000010126990970
35 | 0.700 0.000050214751315 0.999989873009030 0.000060341742285
34 | 0.680 0.000240285431099 0.999939658257715 0.000300627173385
33 | 0.660 0.000961141724397 0.999699372826615 0.001261768897782
32 | 0.640 0.003230504129223 0.998738231102218 0.004492273027004
31 |%% 0.620 0.009163535258516 0.995507726972996 0.013655808285520
30 |%%%%% 0.600 0.022015393458585 0.986344191714480 0.035671201744105
29 |%%%%%%%%%%% 0.580 0.044929374405275 0.964328798255895 0.080600576149380
28 |%%%%%%%%%%%%%%%%%%% 0.560 0.078069429493463 0.919399423850620 0.158670005642843
27 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.540 0.115702141253072 0.841329994357157 0.274372146895915
26 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.520 0.146435522523419 0.725627853104085 0.420807669419335
25 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.500 0.158384661161330 0.579192330580665 0.579192330580665
24 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.480 0.146435522523419 0.420807669419335 0.725627853104085
23 |%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0.460 0.115702141253072 0.274372146895915 0.841329994357157
22 |%%%%%%%%%%%%%%%%%%% 0.440 0.078069429493463 0.158670005642843 0.919399423850620
21 |%%%%%%%%%%% 0.420 0.044929374405275 0.080600576149380 0.964328798255895
20 |%%%%% 0.400 0.022015393458585 0.035671201744105 0.986344191714480
19 |%% 0.380 0.009163535258516 0.013655808285520 0.995507726972996
18 | 0.360 0.003230504129223 0.004492273027004 0.998738231102219
17 | 0.340 0.000961141724397 0.001261768897781 0.999699372826616
16 | 0.320 0.000240285431099 0.000300627173384 0.999939658257715
15 | 0.300 0.000050214751315 0.000060341742285 0.999989873009030
14 | 0.280 0.000008717838770 0.000010126990970 0.999998590847800
13 | 0.260 0.000001248134696 0.000001409152200 0.999999838982496
12 | 0.240 0.000000146076706 0.000000161017504 0.999999985059202
11 | 0.220 0.000000013829747 0.000000014940798 0.999999998888950
10 | 0.0000 0.200 0.000000001045875 0.000000001111050 0.999999999934824
9 | 0.180 0.000000000062217 0.000000000065176 0.999999999997042
8 | 0.160 0.000000000002857 0.000000000002958 0.999999999999899
7 | 0.140 0.000000000000099 0.000000000000101 0.999999999999998
6 | 0.120 0.000000000000003 0.000000000000003 1.000000000000000
5 | 0.100 0.000000000000000 0.000000000000000 1.000000000000000
4 | 0.080 0.000000000000000 0.000000000000000 1.000000000000000
3 | 0.060 0.000000000000000 0.000000000000000 1.000000000000000
2 | 0.040 0.000000000000000 0.000000000000000 1.000000000000000
1 | 0.020 0.000000000000000 0.000000000000000 1.000000000000000
0 | 0.000 0.000000000000000 0.000000000000000 1.000000000000000
Hypergeometric Point Probability k P= 0.000000001045875
Hypergeometric kum. Probability <=k <p= 0.000000001111050
Hypergeometric kum. Probability >k >p= 0.999999998888950
Hypergeometric (c) SCHRAUSSER 2009; 09/29/09 22:35:28;