-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTheta_rQ.h
293 lines (240 loc) · 14.5 KB
/
Theta_rQ.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//----------------------------------------------------------------------------------------------------|Theta_rQ.h (c) SCHRAUSSER 2009
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <time.h>
#include <math.h>
void fn_TTHAsub(int sw, int sw1, int sw3);
void fn_TTHA(int sw);
void profil();
void kopf();
double fn_erg, fn_erg1, fn_erg2;
double seed, seed1;
double zf_wert[2000], s_wert[2000], s11_wert[2000], s12_wert[2000], s21_wert[2000], s22_wert[2000], sr_wert[2000], Q_wert[2000];
int a_THETS11, a_THETS21, a_TTHR1;
int a_THETS12, a_THETS22, a_TTHR2;
int a_TTHA, a_THETP, a_THETQ, sw4, iLauf;
int a_V;
int a_M;
int a_N;
int a_S;
double a_MAX, a_MIN, _S[9], d_[9], d_sum[9], sum[9], sum2[9], qqe_[9];
int _SmiN[9]; double _min[9], _min2[9], min_[9], min__[9], d_min[9], d_min_sum[9], q_min[9];
int _Smax[9]; double _max[9], _max2[9], max_[9], max__[9], d_max[9], d_max_sum[9], q_max[9];
double stat_theta(double wert[2000], int n, int theta) // Harmonisches Mittel(0), HM_ x1,x2, ... ,xn
// Arithmetisches Mittel(1), AM_ x1,x2, ... ,xn
// Summe(2) // SUM x1,x2, ... ,xn
// Standardabweichung(3) // SD x1,x2, ... ,xn
// Populationsvarianzschätzung(4) // VAR x1,x2, ... ,xn
// Produktsumme(5) // PSUM x1,x2, ... ,xn
// Geometrisches Mittel(6) // GM_ x1,x2, ... ,xn
// Schrausser's d(7) // D__ x1,x2, ... ,xn
// DvarO(8) // DVARO x1,x2, ... ,xn
{
int iLauf;
double sd, sd_sum=0, n1=0;//pw
if(theta<5 || theta >6)
{
fn_erg=0;
for(iLauf=1; iLauf<=n; iLauf++) //summierung
{
if(theta >= 1) fn_erg += wert[iLauf];
if(theta == 0) fn_erg += 1/wert[iLauf];
}
if(theta==0) fn_erg = n/fn_erg;//HM mittelung
if(theta==1) fn_erg = fn_erg/n;//AM mittelung
if(theta==3 || theta==4 || theta>=7)//SD / pop VAR schätzer
{
fn_erg = fn_erg/n;
for(iLauf=1; iLauf<=n; iLauf++)
{
if(theta==3 ||theta==4) {sd=fn_erg - wert[iLauf]; sd_sum += pow(sd,2);}
if(theta==7 ||theta==8) {sd=fn_erg - wert[iLauf]; sd_sum += fabs(sd); if(sd != 0) n1++;}
}
if(theta==3) fn_erg = pow(sd_sum/n,0.5);
if(theta==4) fn_erg = sd_sum/(n-1);
if(theta==7 ||theta==8) fn_erg = sd_sum/n1;
if(theta==8) {fn_erg=fn_erg/0.7955556; fn_erg = pow(fn_erg,0.5);}
}
}
if(theta==5 || theta==6)
{
fn_erg=1;
if(theta==5)for(iLauf=1; iLauf<=n; iLauf++) fn_erg *= wert[iLauf];//produktsumme
//if(theta==6) {pw=1.0/n;fn_erg = pow(fn_erg,pw);}//gm
if(theta==6)for(iLauf=1; iLauf<=n; iLauf++) fn_erg *= pow(wert[iLauf],1.0/n);//GM
}
return 0;
};
//Lineare Regressionsfunktion (f(x=y)=bx+a, b=B1y_, a=B0y_; f(y=x)=by+a, b=B1x_, a=B0x_;)
double fn_lin_reg(double wert[2000]/*Regressionsmatrix R(x,y)*/, int n/*nR*/, int koef)
// Korrelation(1), KOR x11,x12, ... ,xn1,xn2
// Kovarianz(2), COV x11,x12, ... ,xn1,xn2
// Determinationskoeffizient(3), DET x11,x12, ... ,xn1,xn2
// Redundanz(4), RED x11,x12, ... ,xn1,xn2
// Regressionskoeffizent ayx (5), AYX x11,x12, ... ,xn1,xn2
// Regressionskoeffizent byx (6), BYX x11,x12, ... ,xn1,xn2
// Regressionskoeffizent axy (7), AXY x11,x12, ... ,xn1,xn2
// Regressionskoeffizent bxy (8), BXY x11,x12, ... ,xn1,xn2
{
int iLauf;
double sum_x=0 ,sum_y=0, sum_y2=0, sum_x2=0, sum_xy=0, am_x, am_y, s2_x=0, s2_y=0, s_x, s_y, r_=0;
double B1x_, B1y_, B0x_, B0y_;
for (iLauf = 1; iLauf <= n; iLauf+=2)// summierung x, y, y2, xy über n
{
sum_x += wert[iLauf];
sum_y += wert[iLauf+1];
sum_x2 += pow(wert[iLauf],2);
sum_y2 += pow(wert[iLauf+1],2);
sum_xy += wert[iLauf]*wert[iLauf+1];
}
//mittelung
am_x = sum_x / (n/2);
am_y = sum_y / (n/2);
for (iLauf = 1; iLauf <= n; iLauf+=2)//standardabweichungsberechnung (nb s unkorrigiert nach df)
{
s2_x += pow(wert[iLauf]-am_x,2);
s2_y += pow(wert[iLauf+1]-am_y,2);
}
s_x = sqrt(s2_x/(n/2));
s_y = sqrt(s2_y/(n/2));
//beta gewichte
B1y_ = (((n/2) * sum_xy) - (sum_x * sum_y)) / (((n/2) * sum_x2) - pow(sum_x,2)); // byx
B1x_ = (((n/2) * sum_xy) - (sum_x * sum_y)) / (((n/2) * sum_y2) - pow(sum_y,2)); // bxy
if(koef==6) fn_erg = B1y_;//BYX / b / b1 / byx / x -> y / f(x) / y = bx
if(koef==8) fn_erg = B1x_;//BXY / b / b1 / bxy / y -> x / f(y) / x = by
B0y_ = am_y - (B1y_ * am_x);// ayx
B0x_ = am_x - (B1x_ * am_y);// axy
if(koef==5) fn_erg = B0y_;//AYX / a / b0 / ayx / x -> y / f(x) / y = x + a
if(koef==7) fn_erg = B0x_;//AXY / a / b0 / axy / y -> x / f(y) / x = y + a
if(koef==1 || koef==3 || koef==4)
for (iLauf = 1; iLauf <= n; iLauf+=2)//korrelationskoeffizient
{
r_ += ((wert[iLauf]-am_x) /s_x) * ((wert[iLauf+1]-am_y) /s_y);
}
if(koef==2)for (iLauf = 1; iLauf <= n; iLauf+=2)//kovarianz
{
r_ += (wert[iLauf]-am_x) * (wert[iLauf+1]-am_y);
}
if(koef==1 || koef==2 || koef==3 || koef==4) fn_erg = r_ /(n/2);
if(koef==3) fn_erg = pow(fn_erg,2); //determinationkoeffizient
if(koef==4) fn_erg = 100*(pow(fn_erg,2)); //redundanz von y
return 0;
};
double qzufall(double seed, double min, double max)
{
double SIGMA = 34.0/45;
fn_erg = 10*( pow(seed,SIGMA) - floor( pow(seed,SIGMA) ) )
- floor( 10*( pow(seed,SIGMA) - floor( pow(seed,SIGMA) ) ) );
fn_erg= min + (max-min)*fn_erg;
return fn_erg;
};
void fn_TTHAsub(int sw, int sw1, int sw3)
{
if (sw3==1) sw4=2*(a_M+a_N);
if (sw3>=2) sw4=1;
if(sw3<6)
{
if(sw == 0) { _min[sw3] += 1/min_[sw3]; _max[sw3] += 1/max_[sw3]; } //sub v 1/minimal-, 1/maximalwert summierung
if(sw >= 1 && sw <= 4 || sw >= 7) { _min[sw3] += min_[sw3]; _max[sw3] += max_[sw3]; } //sub v minimal-, maximalwert summierung
if(sw == 3 || sw == 4) { _min2[sw3]+= pow(min_[sw3],2); _max2[sw3]+= pow(max_[sw3],2); } //sub v minimal-, maximalwert quadriert summierung
if(sw == 5) { _min[sw3] *= min_[sw3]; _max[sw3] *= max_[sw3]; } //sub v minimal-, maximalwert produkt
if(sw == 6) { _min[sw3] *= pow(min_[sw3],1.0/a_S*sw4); _max[sw3] *= pow(max_[sw3],1.0/a_S*sw4); } //sub v wurzel minimal-, wurzel maximalwert produkt
if(sw1==2 && sw >= 7) { d_min[sw3] = q_min[sw3]-fn_erg; d_min_sum[sw3] += fabs(d_min[sw3]); if(d_min[sw3] != 0) _SmiN[sw3]++;} //am sub v minimal diff summierung
if(sw1==2 && sw >= 7) { d_max[sw3] = q_max[sw3]-fn_erg; d_max_sum[sw3] += fabs(d_max[sw3]); if(d_max[sw3] != 0) _Smax[sw3]++;} //am sub v minimal diff summierung
if (sw3==1) stat_theta( zf_wert,a_V,a_THETP); //pop kennwert berechnung
if (sw3==2) stat_theta(s11_wert,a_M,a_THETS11);
if (sw3==3) stat_theta(s12_wert,a_M,a_THETS12);
if (sw3==4) stat_theta(s21_wert,a_N,a_THETS21);
if (sw3==5) stat_theta(s22_wert,a_N,a_THETS22);
}
if (sw3>=6)if(iLauf==1) { min__[sw3]=fn_erg; max__[sw3]=fn_erg;}
if(fn_erg<min__[sw3]) min__[sw3]= fn_erg; //minimalwert bestimmung
if(fn_erg>max__[sw3]) max__[sw3]= fn_erg; //maximalwert bestimmung
if(sw == 0) sum[sw3] += 1/fn_erg; //1/kennwert summierung
if(sw >= 1 && sw <= 4 || sw >= 7) sum[sw3] += fn_erg; //kennwert summierung
if(sw == 3 || sw == 4) sum2[sw3] += pow(fn_erg,2); //kennwert quadriert summierung
if(sw == 5) sum[sw3] *= fn_erg; //kennwert produkt
if(sw == 6) sum[sw3] *= pow(fn_erg,1.0/a_S*sw4); //wurzel kennwert produkt
if(sw1==2 && sw >= 7) {d_[sw3]=qqe_[sw3]-fn_erg; d_sum[sw3] += fabs(d_[sw3]); if(d_[sw3] != 0) _S[sw3]++;} //am kennwert diff summierung
}
void fn_TTHA(int sw)
{
int i, sw5=1;
for (i=1; i<=8; i++)
{
if(i==1) sw4=2*(a_M+a_N);
if(i>=2) {sw4=1; sw5=0;}
if(sw == 0) q_min[i] = (a_S*sw4)/_min[i]; //sub v,m 1/minimalwert mittelung
if(sw == 0) q_max[i] = (a_S*sw4)/_max[i]; //sub v,m 1/maximalwert mittelung
if(sw == 1) q_min[i] = _min[i]/(a_S*sw4); //sub v,m minimalwert mittelung
if(sw == 1) q_max[i] = _max[i]/(a_S*sw4); //sub v,m maximalwert mittelung
if(sw == 2 || sw == 5 || sw == 6) { q_min[i] = _min[i]; q_max[i] = _max[i];} //direkt
if(sw == 3) q_min[i] = pow(_min2[i]/(a_S*sw4)-pow(_min[i]/(a_S*sw4),2),0.5); //sub v,m minimalwert sd ermittelung
if(sw == 3) q_max[i] = pow(_max2[i]/(a_S*sw4)-pow(_max[i]/(a_S*sw4),2),0.5); //sub v,m minimalwert sd ermittelung
if(sw == 4) q_min[i] = (_min2[i]/(a_S*sw4)-pow(_min[i]/(a_S*sw4),2))*(a_S*sw4/(a_S*sw4-sw5)); //sub v,m minimalwert var ermittelung
if(sw == 4) q_max[i] = (_max2[i]/(a_S*sw4)-pow(_max[i]/(a_S*sw4),2))*(a_S*sw4/(a_S*sw4-sw5)); //sub v,m minimalwert var ermittelung
if(sw == 7 || sw == 8) q_min[i] = d_min_sum[i]/(_SmiN[i]); //sub v,m minimalwert mittelung
if(sw == 7 || sw == 8) q_max[i] = d_max_sum[i]/(_Smax[i]); //sub v,m minimalwert mittelung
if(sw == 8) { q_min[i]= pow(q_min[i]/0.7955556,0.5); q_max[i]=pow(q_max[i]/0.7955556,0.5);} //sub v,m min max dvaro berechnung
if(sw == 0) qqe_[i]= (a_S*sw4)/sum[i]; //kennwert mittelung
if(sw == 1) qqe_[i]= sum[i]/(a_S*sw4); //kennwert mittelung
if(sw == 2 || sw == 5 || sw == 6) qqe_[i]= sum[i]; //direkt
if(sw == 3) qqe_[i]= pow(sum2[i]/(a_S*sw4)-pow(sum[i]/(a_S*sw4),2),0.5); //sd ermittelung
if(sw == 4) qqe_[i]= (sum2[i]/(a_S*sw4)-pow(sum[i]/(a_S*sw4),2))*(a_S*sw4/(a_S*sw4-1)); //var ermittelung
if(sw == 7 || sw == 8) qqe_[i]= d_sum[i]/(_S[i]); //kennwert mittelung
if(sw == 8) { qqe_[i]=pow(qqe_[i]/0.7955556,0.5); } //dvaro berechnung
}
}
void profil()
{
int iLauf;
printf("\n");
for(iLauf=1; iLauf<=70; iLauf++) cprintf("\xC4"); printf("\n");
printf("Usage: Theta_rQ [sd][min][max][qq][qp][q11][q12][q21][q22][qr1][qr2][qQ]\n");
printf(" [v][m][n][s] [[x]] [[g]]\n");
printf(" [sd] ....................... Seed: |0| Zeitwert \n");
printf(" [min] ....................... R Minimalwert\n");
printf(" [max] ....................... R Maximalwert\n");
printf(" [qq] ....................... Theta-Theta/\n");
printf(" [qp] ....................... Theta P/\n");
printf(" [q11][q12] .................. Theta S11, S12/\n");
printf(" [q21][q22] .................. Theta S21, S22:\n");
printf(" |0| Harmonisches Mittel (HM)\n");
printf(" |1| Arithmetisches Mittel (AM)\n");
printf(" |2| Summe (SUM)\n");
printf(" |3| Standardabweichung (SD)\n");
printf(" |4| Populationsvarianzschaetzung (VAR)\n");
printf(" |5| Produktsumme(PSM) \n");
printf(" |6| Geometrisches Mittel(GM)\n");
printf(" |7| Schrausser's d (D)\n");
printf(" |8| DvarO (DV)\n");
printf(" [qr1][qr2] ...................Theta Regressionen 1,2/\n");
printf(" |1| Korrelation (kor)\n");
printf(" |2| Kovarianz (cov)\n");
printf(" |3| Determinatinskoeffizient (det)\n");
printf(" |4| Redundanz (red)\n");
printf(" [qQ] ....................... Theta Q:\n");
printf(" |1| Differenz (Diff)\n");
printf(" |2| Quotient (Quot)\n");
printf(" |3| Summe (Summ)\n");
printf(" |4| Produkt (Prod)\n");
printf(" [v] ....................... n zu Theta P (v)\n");
printf(" [m] ....................... n zu Theta S11,S12 (m)\n");
printf(" [n] ....................... n zu Theta S21,S22 (n)\n");
printf(" [s] ....................... n Subpopulationen (s)\n");
printf(" [x] ....................... Vergleichswert x\n");
printf(" [g] ....................... |1| Wertebereich ganzzahlig\n");
for(iLauf=1; iLauf<=70; iLauf++) cprintf("\xC4"); printf("\n");
printf("Theta_rQ by Dietmar Schrausser\n");
printf("compiled on %s @ %s\n", __DATE__, __TIME__);
getch();
exit(0);
}
void kopf()
{
printf("\nTheta_rQ by Dietmar Schrausser\n");
printf("compiled on %s @ %s\n", __DATE__, __TIME__);
printf("computing Theta_rQ:\n\n");
}