diff --git a/lib/OrdinaryDiffEqFIRK/src/algorithms.jl b/lib/OrdinaryDiffEqFIRK/src/algorithms.jl index 75ccae073c..e98389ec7c 100644 --- a/lib/OrdinaryDiffEqFIRK/src/algorithms.jl +++ b/lib/OrdinaryDiffEqFIRK/src/algorithms.jl @@ -163,13 +163,13 @@ struct AdaptiveRadau{CS, AD, F, P, FDT, ST, CJ, Tol, C1, C2, StepLimiter} <: new_W_γdt_cutoff::C2 controller::Symbol step_limiter!::StepLimiter - min_stages::Int - max_stages::Int + min_order::Int + max_order::Int end function AdaptiveRadau(; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), concrete_jac = nothing, - diff_type = Val{:forward}, min_stages = 3, max_stages = 7, + diff_type = Val{:forward}, min_order = 5, max_order = 13, linsolve = nothing, precs = DEFAULT_PRECS, extrapolant = :dense, fast_convergence_cutoff = 1 // 5, new_W_γdt_cutoff = 1 // 5, @@ -187,6 +187,6 @@ function AdaptiveRadau(; chunk_size = Val{0}(), autodiff = Val{true}(), fast_convergence_cutoff, new_W_γdt_cutoff, controller, - step_limiter!, min_stages, max_stages) + step_limiter!, min_order, max_order) end diff --git a/lib/OrdinaryDiffEqFIRK/src/controllers.jl b/lib/OrdinaryDiffEqFIRK/src/controllers.jl index 6de40914d0..3849d8114c 100644 --- a/lib/OrdinaryDiffEqFIRK/src/controllers.jl +++ b/lib/OrdinaryDiffEqFIRK/src/controllers.jl @@ -22,12 +22,14 @@ function step_accept_controller!(integrator, controller::PredictiveController, a cache.step = step + 1 hist_iter = hist_iter * 0.8 + iter * 0.2 cache.hist_iter = hist_iter + max_stages = (alg.max_order - 1) ÷ 4 * 2 + 1 + min_stages = (alg.min_order - 1) ÷ 4 * 2 + 1 if (step > 10) - if (hist_iter < 2.6 && num_stages < alg.max_stages) + if (hist_iter < 2.6 && num_stages <= max_stages) cache.num_stages += 2 cache.step = 1 cache.hist_iter = iter - elseif ((hist_iter > 8 || cache.status == VerySlowConvergence || cache.status == Divergence) && num_stages > alg.min_stages) + elseif ((hist_iter > 8 || cache.status == VerySlowConvergence || cache.status == Divergence) && num_stages >= min_stages) cache.num_stages -= 2 cache.step = 1 cache.hist_iter = iter @@ -44,8 +46,9 @@ function step_reject_controller!(integrator, controller::PredictiveController, a cache.step = step + 1 hist_iter = hist_iter * 0.8 + iter * 0.2 cache.hist_iter = hist_iter + min_stages = (alg.min_order - 1) ÷ 4 * 2 + 1 if (step > 10) - if ((hist_iter > 8 || cache.status == VerySlowConvergence || cache.status == Divergence) && num_stages > alg.min_stages) + if ((hist_iter > 8 || cache.status == VerySlowConvergence || cache.status == Divergence) && num_stages >= min_stages) cache.num_stages -= 2 cache.step = 1 cache.hist_iter = iter diff --git a/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl b/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl index 8dbcd690c7..b971b3cc4f 100644 --- a/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl +++ b/lib/OrdinaryDiffEqFIRK/src/firk_caches.jl @@ -362,6 +362,10 @@ mutable struct RadauIIA9Cache{uType, cuType, uNoUnitsType, rateType, JType, W1Ty tmp4::uType tmp5::uType tmp6::uType + tmp7::uType + tmp8::uType + tmp9::uType + tmp10::uType atmp::uNoUnitsType jac_config::JC linsolve1::F1 @@ -440,6 +444,10 @@ function alg_cache(alg::RadauIIA9, u, rate_prototype, ::Type{uEltypeNoUnits}, tmp4 = zero(u) tmp5 = zero(u) tmp6 = zero(u) + tmp7 = zero(u) + tmp8 = zero(u) + tmp9 = zero(u) + tmp10 = zero(u) atmp = similar(u, uEltypeNoUnits) recursivefill!(atmp, false) jac_config = build_jac_config(alg, f, uf, du1, uprev, u, tmp, dw1) @@ -469,7 +477,7 @@ function alg_cache(alg::RadauIIA9, u, rate_prototype, ::Type{uEltypeNoUnits}, du1, fsalfirst, k, k2, k3, k4, k5, fw1, fw2, fw3, fw4, fw5, J, W1, W2, W3, uf, tab, κ, one(uToltype), 10000, - tmp, tmp2, tmp3, tmp4, tmp5, tmp6, atmp, jac_config, + tmp, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9, tmp10, atmp, jac_config, linsolve1, linsolve2, linsolve3, rtol, atol, dt, dt, Convergence, alg.step_limiter!) end @@ -497,17 +505,26 @@ function alg_cache(alg::AdaptiveRadau, u, rate_prototype, ::Type{uEltypeNoUnits} ::Val{false}) where {uEltypeNoUnits, uBottomEltypeNoUnits, tTypeNoUnits} uf = UDerivativeWrapper(f, t, p) uToltype = constvalue(uBottomEltypeNoUnits) - num_stages = alg.min_stages - max = alg.max_stages + + max_order = alg.max_order + min_order = alg.min_order + max = (max_order - 1) ÷ 4 * 2 + 1 + min = (min_order - 1) ÷ 4 * 2 + 1 + if (alg.min_order < 5) + error("min_order choice $min_order below 5 is not compatible with the algorithm") + elseif (max < min) + error("max_order $max_order is below min_order $min_order") + end + num_stages = min + tabs = [BigRadauIIA5Tableau(uToltype, constvalue(tTypeNoUnits)), BigRadauIIA9Tableau(uToltype, constvalue(tTypeNoUnits)), BigRadauIIA13Tableau(uToltype, constvalue(tTypeNoUnits))] - i = 9 - while i <= alg.max_stages + while i <= max push!(tabs, adaptiveRadauTableau(uToltype, constvalue(tTypeNoUnits), i)) i += 2 end cont = Vector{typeof(u)}(undef, max) - for i in 1: max + for i in 1:max cont[i] = zero(u) end @@ -525,6 +542,8 @@ mutable struct AdaptiveRadauCache{uType, cuType, tType, uNoUnitsType, rateType, z::Vector{uType} w::Vector{uType} c_prime::Vector{tType} + αdt::Vector{tType} + βdt::Vector{tType} dw1::uType ubuff::uType dw2::Vector{cuType} @@ -568,8 +587,16 @@ function alg_cache(alg::AdaptiveRadau, u, rate_prototype, ::Type{uEltypeNoUnits} uf = UJacobianWrapper(f, t, p) uToltype = constvalue(uBottomEltypeNoUnits) - max = alg.max_stages - num_stages = alg.min_stages + max_order = alg.max_order + min_order = alg.min_order + max = (max_order - 1) ÷ 4 * 2 + 1 + min = (min_order - 1) ÷ 4 * 2 + 1 + if (alg.min_order < 5) + error("min_order choice $min_order below 5 is not compatible with the algorithm") + elseif (max < min) + error("max_order $max_order is below min_order $min_order") + end + num_stages = min tabs = [BigRadauIIA5Tableau(uToltype, constvalue(tTypeNoUnits)), BigRadauIIA9Tableau(uToltype, constvalue(tTypeNoUnits)), BigRadauIIA13Tableau(uToltype, constvalue(tTypeNoUnits))] i = 9 @@ -583,9 +610,12 @@ function alg_cache(alg::AdaptiveRadau, u, rate_prototype, ::Type{uEltypeNoUnits} z = Vector{typeof(u)}(undef, max) w = Vector{typeof(u)}(undef, max) for i in 1 : max - z[i] = w[i] = zero(u) + z[i] = zero(u) + w[i] = zero(u) end + αdt = [zero(t) for i in 1:max] + βdt = [zero(t) for i in 1:max] c_prime = Vector{typeof(t)}(undef, max) #time stepping for i in 1 : max c_prime[i] = zero(t) @@ -641,7 +671,7 @@ function alg_cache(alg::AdaptiveRadau, u, rate_prototype, ::Type{uEltypeNoUnits} atol = reltol isa Number ? reltol : zero(reltol) AdaptiveRadauCache(u, uprev, - z, w, c_prime, dw1, ubuff, dw2, cubuff, dw, cont, derivatives, + z, w, c_prime, αdt, βdt, dw1, ubuff, dw2, cubuff, dw, cont, derivatives, du1, fsalfirst, ks, k, fw, J, W1, W2, uf, tabs, κ, one(uToltype), 10000, tmp, diff --git a/lib/OrdinaryDiffEqFIRK/src/firk_perform_step.jl b/lib/OrdinaryDiffEqFIRK/src/firk_perform_step.jl index 5e42aa5b94..2058c4fb15 100644 --- a/lib/OrdinaryDiffEqFIRK/src/firk_perform_step.jl +++ b/lib/OrdinaryDiffEqFIRK/src/firk_perform_step.jl @@ -1032,7 +1032,7 @@ end @unpack dw1, ubuff, dw23, dw45, cubuff1, cubuff2 = cache @unpack k, k2, k3, k4, k5, fw1, fw2, fw3, fw4, fw5 = cache @unpack J, W1, W2, W3 = cache - @unpack tmp, tmp2, tmp3, tmp4, tmp5, tmp6, atmp, jac_config, linsolve1, linsolve2, linsolve3, rtol, atol, step_limiter! = cache + @unpack tmp, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9, tmp10, atmp, jac_config, linsolve1, linsolve2, linsolve3, rtol, atol, step_limiter! = cache @unpack internalnorm, abstol, reltol, adaptive = integrator.opts alg = unwrap_alg(integrator, true) @unpack maxiters = alg @@ -1087,30 +1087,30 @@ end c2′ = c2 * c5′ c3′ = c3 * c5′ c4′ = c4 * c5′ - z1 = @.. c1′ * (cont1 + + @.. z1 = c1′ * (cont1 + (c1′-c4m1) * (cont2 + (c1′ - c3m1) * (cont3 + (c1′ - c2m1) * (cont4 + (c1′ - c1m1) * cont5)))) - z2 = @.. c2′ * (cont1 + + @.. z2 = c2′ * (cont1 + (c2′-c4m1) * (cont2 + (c2′ - c3m1) * (cont3 + (c2′ - c2m1) * (cont4 + (c2′ - c1m1) * cont5)))) - z3 = @.. c3′ * (cont1 + + @.. z3 = c3′ * (cont1 + (c3′-c4m1) * (cont2 + (c3′ - c3m1) * (cont3 + (c3′ - c2m1) * (cont4 + (c3′ - c1m1) * cont5)))) - z4 = @.. c4′ * (cont1 + + @.. z4 = c4′ * (cont1 + (c4′-c4m1) * (cont2 + (c4′ - c3m1) * (cont3 + (c4′ - c2m1) * (cont4 + (c4′ - c1m1) * cont5)))) - z5 = @.. c5′ * (cont1 + + @.. z5 = c5′ * (cont1 + (c5′-c4m1) * (cont2 + (c5′ - c3m1) * (cont3 + (c5′ - c2m1) * (cont4 + (c5′ - c1m1) * cont5)))) - w1 = @.. broadcast=false TI11*z1+TI12*z2+TI13*z3+TI14*z4+TI15*z5 - w2 = @.. broadcast=false TI21*z1+TI22*z2+TI23*z3+TI24*z4+TI25*z5 - w3 = @.. broadcast=false TI31*z1+TI32*z2+TI33*z3+TI34*z4+TI35*z5 - w4 = @.. broadcast=false TI41*z1+TI42*z2+TI43*z3+TI44*z4+TI45*z5 - w5 = @.. broadcast=false TI51*z1+TI52*z2+TI53*z3+TI54*z4+TI55*z5 + @.. w1 = TI11*z1+TI12*z2+TI13*z3+TI14*z4+TI15*z5 + @.. w2 = TI21*z1+TI22*z2+TI23*z3+TI24*z4+TI25*z5 + @.. w3 = TI31*z1+TI32*z2+TI33*z3+TI34*z4+TI35*z5 + @.. w4 = TI41*z1+TI42*z2+TI43*z3+TI44*z4+TI45*z5 + @.. w5 = TI51*z1+TI52*z2+TI53*z3+TI54*z4+TI55*z5 end # Newton iteration @@ -1328,21 +1328,21 @@ end if integrator.EEst <= oneunit(integrator.EEst) cache.dtprev = dt if alg.extrapolant != :constant - cache.cont1 = @.. (z4 - z5) / c4m1 # first derivative on [c4, 1] - tmp1 = @.. (z3 - z4) / c3mc4 # first derivative on [c3, c4] - cache.cont2 = @.. (tmp1 - cache.cont1) / c3m1 # second derivative on [c3, 1] - tmp2 = @.. (z2 - z3) / c2mc3 # first derivative on [c2, c3] - tmp3 = @.. (tmp2 - tmp1) / c2mc4 # second derivative on [c2, c4] - cache.cont3 = @.. (tmp3 - cache.cont2) / c2m1 # third derivative on [c2, 1] - tmp4 = @.. (z1 - z2) / c1mc2 # first derivative on [c1, c2] - tmp5 = @.. (tmp4 - tmp2) / c1mc3 # second derivative on [c1, c3] - tmp6 = @.. (tmp5 - tmp3) / c1mc4 # third derivative on [c1, c4] - cache.cont4 = @.. (tmp6 - cache.cont3) / c1m1 #fourth derivative on [c1, 1] - tmp7 = @.. z1 / c1 #first derivative on [0, c1] - tmp8 = @.. (tmp4 - tmp7) / c2 #second derivative on [0, c2] - tmp9 = @.. (tmp5 - tmp8) / c3 #third derivative on [0, c3] - tmp10 = @.. (tmp6 - tmp9) / c4 #fourth derivative on [0,c4] - cache.cont5 = @.. cache.cont4 - tmp10 #fifth derivative on [0,1] + @.. cache.cont1 = (z4 - z5) / c4m1 # first derivative on [c4, 1] + @.. tmp = (z3 - z4) / c3mc4 # first derivative on [c3, c4] + @.. cache.cont2 = (tmp - cache.cont1) / c3m1 # second derivative on [c3, 1] + @.. tmp2 = (z2 - z3) / c2mc3 # first derivative on [c2, c3] + @.. tmp3 = (tmp2 - tmp) / c2mc4 # second derivative on [c2, c4] + @.. cache.cont3 = (tmp3 - cache.cont2) / c2m1 # third derivative on [c2, 1] + @.. tmp4 = (z1 - z2) / c1mc2 # first derivative on [c1, c2] + @.. tmp5 = (tmp4 - tmp2) / c1mc3 # second derivative on [c1, c3] + @.. tmp6 = (tmp5 - tmp3) / c1mc4 # third derivative on [c1, c4] + @.. cache.cont4 = (tmp6 - cache.cont3) / c1m1 #fourth derivative on [c1, 1] + @.. tmp7 = z1 / c1 #first derivative on [0, c1] + @.. tmp8 = (tmp4 - tmp7) / c2 #second derivative on [0, c2] + @.. tmp9 = (tmp5 - tmp8) / c3 #third derivative on [0, c3] + @.. tmp10 = (tmp6 - tmp9) / c4 #fourth derivative on [0,c4] + @.. cache.cont5 = cache.cont4 - tmp10 #fifth derivative on [0,1] end end @@ -1437,7 +1437,7 @@ end for i in 1 : num_stages z[i] = f(uprev + z[i], p, t + c[i] * dt) end - OrdinaryDiffEqCore.increment_nf!(integrator.stats, 5) + OrdinaryDiffEqCore.increment_nf!(integrator.stats, num_stages) #fw = TI * ff fw = Vector{typeof(u)}(undef, num_stages) @@ -1598,7 +1598,7 @@ end @unpack num_stages, tabs = cache tab = tabs[(num_stages - 1) ÷ 2] @unpack T, TI, γ, α, β, c, e = tab - @unpack κ, cont, derivatives, z, w, c_prime = cache + @unpack κ, cont, derivatives, z, w, c_prime, αdt, βdt= cache @unpack dw1, ubuff, dw2, cubuff, dw = cache @unpack ks, k, fw, J, W1, W2 = cache @unpack tmp, atmp, jac_config, linsolve1, linsolve2, rtol, atol, step_limiter! = cache @@ -1608,13 +1608,18 @@ end mass_matrix = integrator.f.mass_matrix # precalculations - γdt, αdt, βdt = γ / dt, α ./ dt, β ./ dt + γdt = γ / dt + for i in 1 : (num_stages - 1) ÷ 2 + αdt[i] = α[i]/dt + βdt[i] = β[i]/dt + end + (new_jac = do_newJ(integrator, alg, cache, repeat_step)) && (calc_J!(J, integrator, cache); cache.W_γdt = dt) if (new_W = do_newW(integrator, alg, new_jac, cache.W_γdt)) @inbounds for II in CartesianIndices(J) W1[II] = -γdt * mass_matrix[Tuple(II)...] + J[II] - for i in 1 :(num_stages - 1) ÷ 2 + for i in 1 : (num_stages - 1) ÷ 2 W2[i][II] = -(αdt[i] + βdt[i] * im) * mass_matrix[Tuple(II)...] + J[II] end end @@ -1668,7 +1673,7 @@ end @.. tmp = uprev + z[i] f(ks[i], tmp, p, t + c[i] * dt) end - OrdinaryDiffEqCore.increment_nf!(integrator.stats, 5) + OrdinaryDiffEqCore.increment_nf!(integrator.stats, num_stages) #mul!(fw, TI, ks) for i in 1:num_stages @@ -1695,15 +1700,12 @@ end @.. ubuff = fw[1] - γdt * Mw[1] needfactor = iter == 1 && new_W - linsolve1 = cache.linsolve1 if needfactor - linres = dolinsolve(integrator, linsolve1; A = W1, b = _vec(ubuff), linu = _vec(dw1)) + cache.linsolve1 = dolinsolve(integrator, linsolve1; A = W1, b = _vec(ubuff), linu = _vec(dw1)).cache else - linres = dolinsolve(integrator, linsolve1; A = nothing, b = _vec(ubuff), linu = _vec(dw1)) + cache.linsolve1 = dolinsolve(integrator, linsolve1; A = nothing, b = _vec(ubuff), linu = _vec(dw1)).cache end - cache.linsolve1 = linres.cache - for i in 1 :(num_stages - 1) ÷ 2 @.. cubuff[i]=complex( fw[2 * i] - αdt[i] * Mw[2 * i] + βdt[i] * Mw[2 * i + 1], fw[2 * i + 1] - βdt[i] * Mw[2 * i] - αdt[i] * Mw[2 * i + 1]) @@ -1750,12 +1752,12 @@ end # transform `w` to `z` #mul!(z, T, w) for i in 1:num_stages - 1 - z[i] = zero(u) + @.. z[i] = zero(u) for j in 1:num_stages @.. z[i] += T[i,j] * w[j] end end - z[num_stages] = T[num_stages, 1] * w[1] + @.. z[num_stages] = T[num_stages, 1] * w[1] i = 2 while i < num_stages @.. z[num_stages] += w[i] @@ -1796,9 +1798,8 @@ end @.. broadcast=false ubuff=integrator.fsalfirst + tmp if alg.smooth_est - linres = dolinsolve(integrator, linres.cache; b = _vec(ubuff), - linu = _vec(utilde)) - cache.linsolve1 = linres.cache + cache.linsolve1 = dolinsolve(integrator, linsolve1; b = _vec(ubuff), + linu = _vec(utilde)).cache integrator.stats.nsolve += 1 end @@ -1816,9 +1817,8 @@ end @.. broadcast=false ubuff=fsallast + tmp if alg.smooth_est - linres = dolinsolve(integrator, linres.cache; b = _vec(ubuff), - linu = _vec(utilde)) - cache.linsolve1 = linres.cache + cache.linsolve1 = dolinsolve(integrator, linsolve1; b = _vec(ubuff), + linu = _vec(utilde)).cache integrator.stats.nsolve += 1 end diff --git a/lib/OrdinaryDiffEqFIRK/test/ode_firk_tests.jl b/lib/OrdinaryDiffEqFIRK/test/ode_firk_tests.jl index 72e0be40f4..cbbddf9467 100644 --- a/lib/OrdinaryDiffEqFIRK/test/ode_firk_tests.jl +++ b/lib/OrdinaryDiffEqFIRK/test/ode_firk_tests.jl @@ -17,10 +17,10 @@ sim21 = test_convergence(1 ./ 2 .^ (2.5:-1:0.5), prob_ode_2Dlinear, RadauIIA9()) prob_ode_linear_big = remake(prob_ode_linear, u0 = big.(prob_ode_linear.u0), tspan = big.(prob_ode_linear.tspan)) prob_ode_2Dlinear_big = remake(prob_ode_2Dlinear, u0 = big.(prob_ode_2Dlinear.u0), tspan = big.(prob_ode_2Dlinear.tspan)) -for i in [3, 5, 7], prob in [prob_ode_linear_big, prob_ode_2Dlinear_big] +for i in [5, 9, 13], prob in [prob_ode_linear_big, prob_ode_2Dlinear_big] dts = 1 ./ 2 .^ (4.25:-1:0.25) - sim21 = test_convergence(dts, prob, AdaptiveRadau(min_stages = i, max_stages = i)) - @test sim21.𝒪est[:final]≈ (2 * i - 1) atol=testTol + sim21 = test_convergence(dts, prob, AdaptiveRadau(min_order = i, max_order = i)) + @test sim21.𝒪est[:final]≈ i atol=testTol end # test adaptivity diff --git a/lib/OrdinaryDiffEqFIRKGenerator/test/ode_firk_tests.jl b/lib/OrdinaryDiffEqFIRKGenerator/test/ode_firk_tests.jl index d3c19ebbb5..9b2c5b6ca8 100644 --- a/lib/OrdinaryDiffEqFIRKGenerator/test/ode_firk_tests.jl +++ b/lib/OrdinaryDiffEqFIRKGenerator/test/ode_firk_tests.jl @@ -6,8 +6,8 @@ testTol = 0.5 prob_ode_linear_big = remake(prob_ode_linear, u0 = big.(prob_ode_linear.u0), tspan = big.(prob_ode_linear.tspan)) prob_ode_2Dlinear_big = remake(prob_ode_2Dlinear, u0 = big.(prob_ode_2Dlinear.u0), tspan = big.(prob_ode_2Dlinear.tspan)) -for i in [9], prob in [prob_ode_linear_big, prob_ode_2Dlinear_big] +for i in [17, 21], prob in [prob_ode_linear_big, prob_ode_2Dlinear_big] dts = 1 ./ 2 .^ (4.25:-1:0.25) - sim21 = test_convergence(dts, prob, AdaptiveRadau(min_stages = i, max_stages = i)) - @test sim21.𝒪est[:final]≈ (2 * i - 1) atol=testTol + sim21 = test_convergence(dts, prob, AdaptiveRadau(min_order = i, max_order = i)) + @test sim21.𝒪est[:final]≈ i atol=testTol end