-
Notifications
You must be signed in to change notification settings - Fork 1
/
coco_dataset.py
404 lines (337 loc) · 19.7 KB
/
coco_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import sys
import cv2
import math
import random
import numpy as np
import torch
from torch.utils.data import Dataset
from pycocotools.coco import COCO
from entity import JointType, params
class CocoDataset(Dataset):
def __init__(self, coco, insize, mode='train', n_samples=None):
self.coco = coco
assert mode in ['train', 'val', 'eval'], 'Data loading mode is invalid.'
self.mode = mode
self.catIds = coco.getCatIds(catNms=['person'])
self.imgIds = sorted(coco.getImgIds(catIds=self.catIds))
if self.mode in ['val', 'eval'] and n_samples is not None:
self.imgIds = random.sample(self.imgIds, n_samples)
print('{} images: {}'.format(mode, len(self)))
self.insize = insize
def __len__(self):
return len(self.imgIds)
def overlay_paf(self, img, paf):
hue = ((np.arctan2(paf[1], paf[0]) / np.pi) / -2 + 0.5)
saturation = np.sqrt(paf[0] ** 2 + paf[1] ** 2)
saturation[saturation > 1.0] = 1.0
value = saturation.copy()
hsv_paf = np.vstack((hue[np.newaxis], saturation[np.newaxis], value[np.newaxis])).transpose(1, 2, 0)
rgb_paf = cv2.cvtColor((hsv_paf * 255).astype(np.uint8), cv2.COLOR_HSV2BGR)
img = cv2.addWeighted(img, 0.6, rgb_paf, 0.4, 0)
return img
def overlay_pafs(self, img, pafs):
mix_paf = np.zeros((2,) + img.shape[:-1])
paf_flags = np.zeros(mix_paf.shape) # for constant paf
for paf in pafs.reshape((int(pafs.shape[0]/2), 2,) + pafs.shape[1:]):
paf_flags = paf != 0
paf_flags += np.broadcast_to(paf_flags[0] | paf_flags[1], paf.shape)
mix_paf += paf
mix_paf[paf_flags > 0] /= paf_flags[paf_flags > 0]
img = self.overlay_paf(img, mix_paf)
return img
def overlay_heatmap(self, img, heatmap):
rgb_heatmap = cv2.applyColorMap((heatmap * 255).astype(np.uint8), cv2.COLORMAP_JET)
img = cv2.addWeighted(img, 0.6, rgb_heatmap, 0.4, 0)
return img
def overlay_ignore_mask(self, img, ignore_mask):
img = img * np.repeat((ignore_mask == 0).astype(np.uint8)[:, :, None], 3, axis=2)
return img
def get_pose_bboxes(self, poses):
pose_bboxes = []
for pose in poses:
x1 = pose[pose[:, 2] > 0][:, 0].min()
y1 = pose[pose[:, 2] > 0][:, 1].min()
x2 = pose[pose[:, 2] > 0][:, 0].max()
y2 = pose[pose[:, 2] > 0][:, 1].max()
pose_bboxes.append([x1, y1, x2, y2])
pose_bboxes = np.array(pose_bboxes)
return pose_bboxes
def resize_data(self, img, ignore_mask, poses, shape):
"""resize img, mask and annotations"""
img_h, img_w, _ = img.shape
resized_img = cv2.resize(img, shape)
ignore_mask = cv2.resize(ignore_mask.astype(np.uint8), shape).astype('bool')
poses[:, :, :2] = (poses[:, :, :2] * np.array(shape) / np.array((img_w, img_h)))
return resized_img, ignore_mask, poses
def random_resize_img(self, img, ignore_mask, poses):
h, w, _ = img.shape
joint_bboxes = self.get_pose_bboxes(poses)
bbox_sizes = ((joint_bboxes[:, 2:] - joint_bboxes[:, :2] + 1)**2).sum(axis=1)**0.5
min_scale = params['min_box_size']/bbox_sizes.min()
max_scale = params['max_box_size']/bbox_sizes.max()
# print(len(bbox_sizes))
# print('min: {}, max: {}'.format(min_scale, max_scale))
min_scale = min(max(min_scale, params['min_scale']), 1)
max_scale = min(max(max_scale, 1), params['max_scale'])
# print('min: {}, max: {}'.format(min_scale, max_scale))
scale = float((max_scale - min_scale) * random.random() + min_scale)
shape = (round(w * scale), round(h * scale))
# print(scale)
resized_img, resized_mask, resized_poses = self.resize_data(img, ignore_mask, poses, shape)
return resized_img, resized_mask, poses
def random_rotate_img(self, img, mask, poses):
h, w, _ = img.shape
# degree = (random.random() - 0.5) * 2 * params['max_rotate_degree']
degree = np.random.randn() / 3 * params['max_rotate_degree']
rad = degree * math.pi / 180
center = (w / 2, h / 2)
R = cv2.getRotationMatrix2D(center, degree, 1)
bbox = (w*abs(math.cos(rad)) + h*abs(math.sin(rad)), w*abs(math.sin(rad)) + h*abs(math.cos(rad)))
R[0, 2] += bbox[0] / 2 - center[0]
R[1, 2] += bbox[1] / 2 - center[1]
rotate_img = cv2.warpAffine(img, R, (int(bbox[0]+0.5), int(bbox[1]+0.5)), flags=cv2.INTER_CUBIC,
borderMode=cv2.BORDER_CONSTANT, borderValue=[127.5, 127.5, 127.5])
rotate_mask = cv2.warpAffine(mask.astype('uint8')*255, R, (int(bbox[0]+0.5), int(bbox[1]+0.5))) > 0
tmp_poses = np.ones_like(poses)
tmp_poses[:, :, :2] = poses[:, :, :2].copy()
tmp_rotate_poses = np.dot(tmp_poses, R.T) # apply rotation matrix to the poses
rotate_poses = poses.copy() # to keep visibility flag
rotate_poses[:, :, :2] = tmp_rotate_poses
return rotate_img, rotate_mask, rotate_poses
def random_crop_img(self, img, ignore_mask, poses):
h, w, _ = img.shape
insize = self.insize
joint_bboxes = self.get_pose_bboxes(poses)
bbox = random.choice(joint_bboxes) # select a bbox randomly
bbox_center = bbox[:2] + (bbox[2:] - bbox[:2])/2
r_xy = np.random.rand(2)
perturb = ((r_xy - 0.5) * 2 * params['center_perterb_max'])
center = (bbox_center + perturb + 0.5).astype('i')
crop_img = np.zeros((insize, insize, 3), 'uint8') + 127.5
crop_mask = np.zeros((insize, insize), 'bool')
offset = (center - (insize-1)/2 + 0.5).astype('i')
offset_ = (center + (insize-1)/2 - (w-1, h-1) + 0.5).astype('i')
x1, y1 = (center - (insize-1)/2 + 0.5).astype('i')
x2, y2 = (center + (insize-1)/2 + 0.5).astype('i')
x1 = max(x1, 0)
y1 = max(y1, 0)
x2 = min(x2, w-1)
y2 = min(y2, h-1)
x_from = -offset[0] if offset[0] < 0 else 0
y_from = -offset[1] if offset[1] < 0 else 0
x_to = insize - offset_[0] - 1 if offset_[0] >= 0 else insize - 1
y_to = insize - offset_[1] - 1 if offset_[1] >= 0 else insize - 1
crop_img[y_from:y_to+1, x_from:x_to+1] = img[y1:y2+1, x1:x2+1].copy()
crop_mask[y_from:y_to+1, x_from:x_to+1] = ignore_mask[y1:y2+1, x1:x2+1].copy()
poses[:, :, :2] -= offset
return crop_img.astype('uint8'), crop_mask, poses
def distort_color(self, img):
img_max = np.broadcast_to(np.array(255, dtype=np.uint8), img.shape[:-1])
img_min = np.zeros(img.shape[:-1], dtype=np.uint8)
hsv_img = cv2.cvtColor(img.copy(), cv2.COLOR_BGR2HSV).astype(np.int32)
hsv_img[:, :, 0] = np.maximum(np.minimum(hsv_img[:, :, 0] - 10 + np.random.randint(20 + 1), img_max), img_min) # hue
hsv_img[:, :, 1] = np.maximum(np.minimum(hsv_img[:, :, 1] - 40 + np.random.randint(80 + 1), img_max), img_min) # saturation
hsv_img[:, :, 2] = np.maximum(np.minimum(hsv_img[:, :, 2] - 30 + np.random.randint(60 + 1), img_max), img_min) # value
hsv_img = hsv_img.astype(np.uint8)
distorted_img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
return distorted_img
def flip_img(self, img, mask, poses):
flipped_img = cv2.flip(img, 1)
flipped_mask = cv2.flip(mask.astype(np.uint8), 1).astype('bool')
poses[:, :, 0] = img.shape[1] - 1 - poses[:, :, 0]
def swap_joints(poses, joint_type_1, joint_type_2):
tmp = poses[:, joint_type_1].copy()
poses[:, joint_type_1] = poses[:, joint_type_2]
poses[:, joint_type_2] = tmp
swap_joints(poses, JointType.LeftEye, JointType.RightEye)
swap_joints(poses, JointType.LeftEar, JointType.RightEar)
swap_joints(poses, JointType.LeftShoulder, JointType.RightShoulder)
swap_joints(poses, JointType.LeftElbow, JointType.RightElbow)
swap_joints(poses, JointType.LeftHand, JointType.RightHand)
swap_joints(poses, JointType.LeftWaist, JointType.RightWaist)
swap_joints(poses, JointType.LeftKnee, JointType.RightKnee)
swap_joints(poses, JointType.LeftFoot, JointType.RightFoot)
return flipped_img, flipped_mask, poses
def augment_data(self, img, ignore_mask, poses):
aug_img = img.copy()
aug_img, ignore_mask, poses = self.random_resize_img(aug_img, ignore_mask, poses)
aug_img, ignore_mask, poses = self.random_rotate_img(aug_img, ignore_mask, poses)
aug_img, ignore_mask, poses = self.random_crop_img(aug_img, ignore_mask, poses)
if np.random.randint(2):
aug_img = self.distort_color(aug_img)
if np.random.randint(2):
aug_img, ignore_mask, poses = self.flip_img(aug_img, ignore_mask, poses)
return aug_img, ignore_mask, poses
# return shape: (height, width)
def generate_gaussian_heatmap(self, shape, joint, sigma):
x, y = joint
grid_x = np.tile(np.arange(shape[1]), (shape[0], 1))
grid_y = np.tile(np.arange(shape[0]), (shape[1], 1)).transpose()
grid_distance = (grid_x - x) ** 2 + (grid_y - y) ** 2
gaussian_heatmap = np.exp(-0.5 * grid_distance / sigma**2)
#产生的就是一整张图的gaussian分布,只不过里中心点远的点非常非常小
return gaussian_heatmap
def generate_heatmaps(self, img, poses, heatmap_sigma):
heatmaps = np.zeros((0,) + img.shape[:-1])
sum_heatmap = np.zeros(img.shape[:-1])
for joint_index in range(len(JointType)):
heatmap = np.zeros(img.shape[:-1])
for pose in poses:
if pose[joint_index, 2] > 0:
jointmap = self.generate_gaussian_heatmap(img.shape[:-1], pose[joint_index][:2], heatmap_sigma)
heatmap[jointmap > heatmap] = jointmap[jointmap > heatmap]
sum_heatmap[jointmap > sum_heatmap] = jointmap[jointmap > sum_heatmap]
heatmaps = np.vstack((heatmaps, heatmap.reshape((1,) + heatmap.shape)))
bg_heatmap = 1 - sum_heatmap # background channel
heatmaps = np.vstack((heatmaps, bg_heatmap[None]))
'''
We take the maximum of the confidence maps insteaof the average so that thprecision of close by peaks remains distinct,
as illus- trated in the right figure. At test time, we predict confidence maps (as shown in the first row of Fig. 4),
and obtain body part candidates by performing non-maximum suppression.
At test time, we predict confidence maps (as shown in the first row of Fig. 4),
and obtain body part candidates by performing non-maximum suppression.
'''
return heatmaps.astype('f')
# return shape: (2, height, width)
def generate_constant_paf(self, shape, joint_from, joint_to, paf_width):
if np.array_equal(joint_from, joint_to): # same joint
return np.zeros((2,) + shape[:-1])
joint_distance = np.linalg.norm(joint_to - joint_from)
unit_vector = (joint_to - joint_from) / joint_distance
rad = np.pi / 2
rot_matrix = np.array([[np.cos(rad), np.sin(rad)], [-np.sin(rad), np.cos(rad)]])
vertical_unit_vector = np.dot(rot_matrix, unit_vector) # 垂直分量
grid_x = np.tile(np.arange(shape[1]), (shape[0], 1))
grid_y = np.tile(np.arange(shape[0]), (shape[1], 1)).transpose() # grid_x, grid_y用来遍历图上的每一个点
horizontal_inner_product = unit_vector[0] * (grid_x - joint_from[0]) + unit_vector[1] * (grid_y - joint_from[1])
horizontal_paf_flag = (0 <= horizontal_inner_product) & (horizontal_inner_product <= joint_distance)
'''
相当于遍历图上的每一个点,从这个点到joint_from的向量与unit_vector点乘
两个向量点乘相当于取一个向量在另一个向量方向上的投影
如果点乘大于0,那就可以判断这个点在不在这个躯干的方向上了,
(0 <= horizontal_inner_product) & (horizontal_inner_product <= joint_distance)
这个限制条件是保证在与躯干水平的方向上,找出所有落在躯干范围内的点
然而还要判断这个点离躯干的距离有多远
'''
vertical_inner_product = vertical_unit_vector[0] * (grid_x - joint_from[0]) + vertical_unit_vector[1] * (grid_y - joint_from[1])
vertical_paf_flag = np.abs(vertical_inner_product) <= paf_width # paf_width : 8
'''
要判断这个点离躯干的距离有多远,只要拿与起始点的向量点乘垂直分量就可以了,
所以这里的限制条件是paf_width, 不然一个手臂就无限粗了
vertical_paf_flag = np.abs(vertical_inner_product) <= paf_width
这个限制条件是保证在与躯干垂直的方向上,找出所有落在躯干范围内的点(这个躯干范围看来是手工定义的)
'''
paf_flag = horizontal_paf_flag & vertical_paf_flag # 合并两个限制条件
constant_paf = np.stack((paf_flag, paf_flag)) * np.broadcast_to(unit_vector, shape[:-1] + (2,)).transpose(2, 0, 1)
# constant_paf.shape : (2, 368, 368), 上面这一步就是把2维的unit_vector broadcast到所有paf_flag为true的点上去
# constant_paf里面有368*368个点,每个点上有两个值,代表一个矢量
# constant_paf里的这些矢量只会取两种值,要么是(0,0),要么是unit_vector的值
'''最后,这个函数完成的是论文里公式8和公式9,相关说明也可以看论文这一段的描述'''
return constant_paf
def generate_pafs(self, img, poses, paf_sigma):
pafs = np.zeros((0,) + img.shape[:-1])
for limb in params['limbs_point']:
paf = np.zeros((2,) + img.shape[:-1])
paf_flags = np.zeros(paf.shape) # for constant paf
for pose in poses:
joint_from, joint_to = pose[limb]
if joint_from[2] > 0 and joint_to[2] > 0:
limb_paf = self.generate_constant_paf(img.shape, joint_from[:2], joint_to[:2], paf_sigma) #[2,368,368]
limb_paf_flags = limb_paf != 0
paf_flags += np.broadcast_to(limb_paf_flags[0] | limb_paf_flags[1], limb_paf.shape)
'''
这个flags的作用是计数,在遍历了一张图上的所有人体之后,有的地方可能会有重叠,
比如说两个人的左手臂交织在一起,重叠的部分就累加了两次,
这里计数了之后,后面可以用来求均值
'''
paf += limb_paf
paf[paf_flags > 0] /= paf_flags[paf_flags > 0] # 求均值
pafs = np.vstack((pafs, paf))
return pafs.astype('f')
def get_img_annotation(self, ind=None, img_id=None):
"""インデックスまたは img_id から coco annotation dataを抽出、条件に満たない場合はNoneを返す """
'''从索引或img_id中提取coco注释数据,如果不符合条件,则返回None'''
annotations = None
if ind is not None:
img_id = self.imgIds[ind]
anno_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
# annotation for that image
if len(anno_ids) > 0:
annotations_for_img = self.coco.loadAnns(anno_ids)
person_cnt = 0
valid_annotations_for_img = []
for annotation in annotations_for_img:
# if too few keypoints or too small
if annotation['num_keypoints'] >= params['min_keypoints']:
# and annotation['area'] > params['min_area']:
person_cnt += 1
valid_annotations_for_img.append(annotation)
# if person annotation
if person_cnt > 0:
annotations = valid_annotations_for_img
if self.mode == 'train':
# img_path = os.path.join(params['coco_dir'], 'train2017', self.coco.loadImgs([img_id])[0]['file_name'])
img_path = os.path.join(params['coco_dir'], 'images', 'train', self.coco.loadImgs([img_id])[0]['file_name'])
mask_path = os.path.join(params['coco_dir'], 'ignore_mask_train2017', '{:012d}.png'.format(img_id))
else:
# img_path = os.path.join(params['coco_dir'], 'val2017', self.coco.loadImgs([img_id])[0]['file_name'])
img_path = os.path.join(params['coco_dir'], 'images', 'valid', self.coco.loadImgs([img_id])[0]['file_name'])
mask_path = os.path.join(params['coco_dir'], 'ignore_mask_val2017', '{:012d}.png'.format(img_id))
img = cv2.imread(img_path)
ignore_mask = cv2.imread(mask_path, 0)
if ignore_mask is None:
ignore_mask = np.zeros(img.shape[:2], 'bool')
else:
ignore_mask = ignore_mask == 255
if self.mode == 'eval':
return img, img_id, annotations_for_img, ignore_mask
return img, img_id, annotations, ignore_mask
def parse_coco_annotation(self, annotations):
"""coco annotation dataのアノテーションをposes配列に変換"""
'''将coco注释数据注释转换为姿势数组'''
poses = np.zeros((0, len(JointType), 3), dtype=np.int32)
for ann in annotations:
ann_pose = np.array(ann['keypoints']).reshape(-1, 3)
pose = np.zeros((1, len(JointType), 3), dtype=np.int32)
# convert poses position
for i, joint_index in enumerate(params['coco_joint_indices']):
pose[0][joint_index] = ann_pose[i]
# compute neck position
if pose[0][JointType.LeftShoulder][2] > 0 and pose[0][JointType.RightShoulder][2] > 0:
pose[0][JointType.Neck][0] = int((pose[0][JointType.LeftShoulder][0] + pose[0][JointType.RightShoulder][0]) / 2)
pose[0][JointType.Neck][1] = int((pose[0][JointType.LeftShoulder][1] + pose[0][JointType.RightShoulder][1]) / 2)
pose[0][JointType.Neck][2] = 2
poses = np.vstack((poses, pose))
# gt_pose = np.array(ann['keypoints']).reshape(-1, 3)
return poses
def generate_labels(self, img, poses, ignore_mask):
img, ignore_mask, poses = self.augment_data(img, ignore_mask, poses)
resized_img, ignore_mask, resized_poses = self.resize_data(img, ignore_mask, poses, shape=(self.insize, self.insize))
heatmaps = self.generate_heatmaps(resized_img, resized_poses, params['heatmap_sigma'])
pafs = self.generate_pafs(resized_img, resized_poses, params['paf_sigma']) # params['paf_sigma']: 8
ignore_mask = cv2.morphologyEx(ignore_mask.astype('uint8'), cv2.MORPH_DILATE, np.ones((16, 16))).astype('bool')
return resized_img, pafs, heatmaps, ignore_mask
def preprocess(self, img):
x_data = img.astype('f')
x_data /= 255
x_data -= 0.5
x_data = x_data.transpose(2, 0, 1)
return x_data
def __getitem__(self, i):
img, img_id, annotations, ignore_mask = self.get_img_annotation(ind=i)
if self.mode == 'eval':
# don't need to make heatmaps/pafs
return img, annotations, img_id
# if no annotations are available
while annotations is None:
img_id = self.imgIds[np.random.randint(len(self))]
img, img_id, annotations, ignore_mask = self.get_img_annotation(img_id=img_id)
poses = self.parse_coco_annotation(annotations)
resized_img, pafs, heatmaps, ignore_mask = self.generate_labels(img, poses, ignore_mask)
resized_img = self.preprocess(resized_img)
resized_img = torch.tensor(resized_img)
pafs = torch.tensor(pafs)
heatmaps = torch.tensor(heatmaps)
ignore_mask = torch.tensor(ignore_mask.astype('f'))
return resized_img, pafs, heatmaps, ignore_mask