forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 6
/
jax_test.py
664 lines (601 loc) · 30.4 KB
/
jax_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import os
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
print('DEVICES:', jax.devices())
import jax.numpy as jnp
from jax_llama import model as jax_model
from jax_llama import config
from llama import model
import torch
import numpy as np
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from typing import Tuple, List, Tuple, Optional
import os
from flax.core.frozen_dict import freeze
from dataclasses import dataclass
import functools
from llama.generation import Llama as torch_load
from jax_example import load as jax_load
from flax.linen import make_causal_mask
from jax_llama.llama2_tokenizer import Tokenizer as LLaMA2Tokenizer
from jax_llama.llama3_tokenizer import Tokenizer as LLaMA3Tokenizer
from llama.tokenizer import Tokenizer
from jax_llama.partition import with_named_sharding_constraint
from jax.sharding import PartitionSpec as P
import fire
@dataclass
class ModelArgs:
dim: int = 32
n_layers: int = 4
n_heads: int = 4
vocab_size: int = 256
n_kv_heads: Optional[int] = 2
multiple_of: int = 2
ffn_dim_multiplier: Optional[float] = None
norm_eps: float = 1e-5
rope_theta: float = 10000.0
max_batch_size: int = 1
max_seq_len: int = 64
def transformers_config(self) -> config.LLaMAConfig:
intermediate_size = int(2 * (self.dim * 4) / 3)
if self.ffn_dim_multiplier is not None:
intermediate_size = int(self.ffn_dim_multiplier * intermediate_size)
intermediate_size = self.multiple_of * ((intermediate_size + self.multiple_of - 1) // self.multiple_of)
return config.LLaMAConfig(
vocab_size=self.vocab_size,
hidden_size=self.dim,
intermediate_size=intermediate_size,
num_hidden_layers=self.n_layers,
num_attention_heads=self.n_heads,
num_key_value_heads=self.n_kv_heads,
max_sequence_length=self.max_seq_len,
rms_norm_eps=self.norm_eps,
rope_theta=self.rope_theta,
)
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def test_RMSNorm(args: ModelArgs, total_tests: int, atol: float) -> np.ndarray:
errs = []
for test_n in range(total_tests):
x = np.random.randn(args.max_batch_size, args.dim).astype(np.float32)
jax_rms_norm = jax_model.RMSNorm(args.dim, eps=args.norm_eps)
jax_params = jax_rms_norm.init(jax.random.PRNGKey(0), jnp.ones(args.dim, dtype=jnp.float32))['params']
jax_output = jax_rms_norm.apply({'params': jax_params}, jnp.asarray(x))
jax_output = np.asarray(jax_output)
torch_rms_norm = model.RMSNorm(args.dim, eps=args.norm_eps)
torch_output = torch_rms_norm(torch.tensor(x))
torch_output = torch_output.detach().numpy()
assert np.allclose(jax_output, torch_output, atol=atol), f"RMSNorm test {test_n} failed"
errs.append(np.max(np.abs(jax_output - torch_output)))
return np.asarray(errs, dtype=np.float32)
def test_precompute_freqs_cis(args: ModelArgs, atol: float) -> float:
jax_freqs_cis = jax_model.precompute_freqs_cis(args.dim // args.n_heads, args.max_seq_len)
jax_freqs_cis = np.asarray(jax_freqs_cis)
torch_freqs_cis = model.precompute_freqs_cis(args.dim // args.n_heads, args.max_seq_len)
torch_freqs_cis = torch_freqs_cis.detach().numpy()
assert np.allclose(jax_freqs_cis, torch_freqs_cis, atol=atol), f"precompute_freqs_cis test failed"
return np.max(np.abs(jax_freqs_cis - torch_freqs_cis))
def test_apply_roary_emb(args: ModelArgs, total_tests: int, atol: float) -> Tuple[np.ndarray]:
errs0, errs1 = [], []
for test_n in range(total_tests):
xq = np.random.randn(args.max_batch_size, args.max_seq_len, args.n_heads, args.dim // args.n_heads).astype(np.float32)
xk = np.random.randn(args.max_batch_size, args.max_seq_len, args.n_heads, args.dim // args.n_heads).astype(np.float32)
jax_freqs_cis = jax_model.precompute_freqs_cis(args.dim // args.n_heads, args.max_seq_len)
jax_output = jax_model.apply_rotary_emb(jnp.asarray(xq), jnp.asarray(xk), jax_freqs_cis[None])
jax_output = (np.asarray(jax_output[0]), np.asarray(jax_output[1]))
torch_freqs_cis = model.precompute_freqs_cis(args.dim // args.n_heads, args.max_seq_len)
torch_output = model.apply_rotary_emb(torch.tensor(xq), torch.tensor(xk), torch_freqs_cis)
torch_output = (torch_output[0].detach().numpy(), torch_output[1].detach().numpy())
assert np.allclose(jax_output[0], torch_output[0], atol=atol) and \
np.allclose(jax_output[1], torch_output[1], atol=atol), f"apply_rotary_emb test {test_n} failed"
errs0.append(np.max(np.abs(jax_output[0] - torch_output[0])))
errs1.append(np.max(jax_output[1] - torch_output[1]))
return np.asarray(errs0, dtype=np.float32), np.asarray(errs1, dtype=np.float32)
def test_Attention(args: ModelArgs, total_tests: int, atol: float, is_llama3: bool) -> float:
kv_heads = args.n_kv_heads if args.n_kv_heads is not None else args.n_heads
errs = []
for test_n in range(total_tests):
x = np.random.randn(args.max_batch_size, args.max_seq_len, args.dim).astype(np.float32)
wq = np.random.randn(args.dim, args.dim).astype(np.float32)
wk = np.random.randn(args.dim, args.dim//(args.n_heads//kv_heads)).astype(np.float32)
wv = np.random.randn(args.dim, args.dim//(args.n_heads//kv_heads)).astype(np.float32)
wo = np.random.randn(args.dim, args.dim).astype(np.float32)
jax_attention = jax_model.FlaxLLaMAAttention(args.transformers_config(), precision='highest')
jax_params = freeze({
'wq': {'kernel': jnp.asarray(wq)},
'wk': {'kernel': jnp.asarray(wk)},
'wv': {'kernel': jnp.asarray(wv)},
'wo': {'kernel': jnp.asarray(wo)},
})
jax_output = jax_attention.apply(
{'params': jax_params},
jnp.asarray(x),
jnp.ones((args.max_batch_size, args.max_seq_len), dtype=np.int32),
jnp.broadcast_to(jnp.arange(args.max_seq_len, dtype=np.int32)[None, :], (args.max_batch_size, args.max_seq_len)),
)[0]
jax_output = np.asarray(jax_output)
torch_freqs_cis = model.precompute_freqs_cis(args.dim // args.n_heads, args.max_seq_len)
if is_llama3:
torch_attention = model.Attention(
model.ModelArgs(
n_heads=args.n_heads,
n_kv_heads=kv_heads,
dim=args.dim,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
rope_theta=args.rope_theta,
),
)
else:
torch_attention = model.Attention(
model.ModelArgs(
n_heads=args.n_heads,
n_kv_heads=kv_heads,
dim=args.dim,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
),
)
torch_attention.load_state_dict({
"wo.weight": torch.tensor(wo.transpose()),
"wq.weight": torch.tensor(wq.transpose()),
"wv.weight": torch.tensor(wv.transpose()),
"wk.weight": torch.tensor(wk.transpose()),
}) # load weights, have to transpose because pytorch linear layers are reversed from Jax.
torch_output = torch_attention(
torch.tensor(x),
0,
torch_freqs_cis,
torch.where(torch.tensor(np.asarray(make_causal_mask(jnp.ones((1, args.max_seq_len), dtype="bool"), dtype="bool"))) == False, float(jnp.finfo(jnp.float32).min), 0.0),
)
torch_output = torch_output.detach().numpy()
assert np.allclose(jax_output, torch_output, atol=atol), f"Attention test {test_n} failed"
errs.append(np.max(np.abs(jax_output - torch_output)))
return np.asarray(errs, dtype=np.float32)
def test_feedForward(args: ModelArgs, total_tests: int, atol: float) -> List[float]:
errs = []
for test_n in range(total_tests):
transformers_config = args.transformers_config()
x = np.random.randn(args.max_batch_size, args.max_seq_len, args.dim).astype(np.float32)
w1 = np.random.randn(args.dim, transformers_config.intermediate_size).astype(np.float32)
w2 = np.random.randn(transformers_config.intermediate_size, args.dim).astype(np.float32)
w3 = np.random.randn(args.dim, transformers_config.intermediate_size).astype(np.float32)
jax_mlp = jax_model.FlaxLLaMAMLP(transformers_config, precision='highest')
jax_params = freeze({
'w1': {'kernel': jnp.asarray(w1)},
'w2': {'kernel': jnp.asarray(w2)},
'w3': {'kernel': jnp.asarray(w3)},
}) # load weights
jax_output = jax_mlp.apply({'params': jax_params}, jnp.asarray(x))
jax_output = np.asarray(jax_output)
torch_mlp = model.FeedForward(
dim=args.dim,
hidden_dim=args.dim*4,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
)
torch_mlp.load_state_dict({
"w1.weight": torch.tensor(w1.transpose()),
"w2.weight": torch.tensor(w2.transpose()),
"w3.weight": torch.tensor(w3.transpose()),
}) # load weights, have to transpose because pytorch linear layers are reversed from Jax.
torch_output = torch_mlp(torch.tensor(x))
torch_output = torch_output.detach().numpy()
assert np.allclose(jax_output, torch_output, atol=atol), f"FeedForward test {test_n} failed"
errs.append(np.max(np.abs(jax_output - torch_output)))
return np.asarray(errs, dtype=np.float32)
def test_TransformerBlock(args: ModelArgs, total_tests: int, atol: float, is_llama3: bool) -> np.ndarray:
kv_heads = args.n_kv_heads if args.n_kv_heads is not None else args.n_heads
errs = []
for test_n in range(total_tests):
transformers_config = args.transformers_config()
x = np.random.randn(args.max_batch_size, args.max_seq_len, args.dim).astype(np.float32)
wq = np.random.randn(args.dim, args.dim).astype(np.float32)
wk = np.random.randn(args.dim, args.dim//(args.n_heads//kv_heads)).astype(np.float32)
wv = np.random.randn(args.dim, args.dim//(args.n_heads//kv_heads)).astype(np.float32)
wo = np.random.randn(args.dim, args.dim).astype(np.float32)
w1 = np.random.randn(args.dim, transformers_config.intermediate_size).astype(np.float32)
w2 = np.random.randn(transformers_config.intermediate_size, args.dim).astype(np.float32)
w3 = np.random.randn(args.dim, transformers_config.intermediate_size).astype(np.float32)
attention_norm_scale = np.random.randn(args.dim).astype(np.float32)
ffn_norm_scale = np.random.randn(args.dim).astype(np.float32)
jax_transformer_block = jax_model.FlaxLLaMABlock(transformers_config, precision='highest')
jax_params = freeze({
'attention': {
'wq': {'kernel': jnp.asarray(wq)},
'wk': {'kernel': jnp.asarray(wk)},
'wv': {'kernel': jnp.asarray(wv)},
'wo': {'kernel': jnp.asarray(wo)},
},
'feed_forward': {
'w1': {'kernel': jnp.asarray(w1)},
'w2': {'kernel': jnp.asarray(w2)},
'w3': {'kernel': jnp.asarray(w3)},
},
'attention_norm': {'kernel': jnp.asarray(attention_norm_scale)},
'ffn_norm': {'kernel': jnp.asarray(ffn_norm_scale)},
})
# get output
jax_output = jax_transformer_block.apply(
{'params': jax_params},
jnp.asarray(x),
jnp.ones((args.max_batch_size, args.max_seq_len), dtype=np.int32),
jnp.broadcast_to(jnp.arange(args.max_seq_len, dtype=np.int32)[None, :], (args.max_batch_size, args.max_seq_len)),
)[0]
jax_output = np.asarray(jax_output)
torch_freqs_cis = model.precompute_freqs_cis(args.dim // args.n_heads, args.max_seq_len)
if is_llama3:
torch_transformer_block = model.TransformerBlock(
0,
model.ModelArgs(
dim=args.dim,
n_heads=args.n_heads,
n_kv_heads=kv_heads,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
norm_eps=args.norm_eps,
rope_theta=args.rope_theta,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
),
)
else:
torch_transformer_block = model.TransformerBlock(
0,
model.ModelArgs(
dim=args.dim,
n_heads=args.n_heads,
n_kv_heads=kv_heads,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
norm_eps=args.norm_eps,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
),
)
torch_transformer_block.load_state_dict({
"attention.wo.weight": torch.tensor(wo.transpose()),
"attention.wq.weight": torch.tensor(wq.transpose()),
"attention.wv.weight": torch.tensor(wv.transpose()),
"attention.wk.weight": torch.tensor(wk.transpose()),
"feed_forward.w1.weight": torch.tensor(w1.transpose()),
"feed_forward.w2.weight": torch.tensor(w2.transpose()),
"feed_forward.w3.weight": torch.tensor(w3.transpose()),
"attention_norm.weight": torch.tensor(attention_norm_scale),
"ffn_norm.weight": torch.tensor(ffn_norm_scale),
}) # load weights, have to transpose because pytorch linear layers are reversed from Jax.
torch_output = torch_transformer_block(
torch.tensor(x),
0,
torch_freqs_cis,
torch.where(torch.tensor(np.asarray(make_causal_mask(jnp.ones((1, args.max_seq_len), dtype="bool"), dtype="bool"))) == False, float(jnp.finfo(jnp.float32).min), 0.0),
)
torch_output = torch_output.detach().numpy()
assert np.allclose(jax_output, torch_output, atol=atol), f"TransformerBlock test {test_n} failed"
errs.append(np.abs(jax_output - torch_output).max())
return np.asarray(errs, dtype=np.float32)
def test_Transformer(args: ModelArgs, total_tests: int, atol: float, is_llama3: bool) -> np.ndarray:
kv_heads = args.n_kv_heads if args.n_kv_heads is not None else args.n_heads
errs = []
for test_n in range(total_tests):
transformers_config = args.transformers_config()
x = np.random.randint(low=0, high=args.vocab_size, size=(args.max_batch_size, args.max_seq_len), dtype=np.int32)
layer_weights = [
{
'attention': {
'wq': {'kernel': np.random.randn(args.dim, args.dim).astype(np.float32)},
'wk': {'kernel': np.random.randn(args.dim, args.dim//(args.n_heads//kv_heads)).astype(np.float32)},
'wv': {'kernel': np.random.randn(args.dim, args.dim//(args.n_heads//kv_heads)).astype(np.float32)},
'wo': {'kernel': np.random.randn(args.dim, args.dim).astype(np.float32)},
},
'feed_forward': {
'w1': {'kernel': np.random.randn(args.dim, transformers_config.intermediate_size).astype(np.float32)},
'w2': {'kernel': np.random.randn(transformers_config.intermediate_size, args.dim).astype(np.float32)},
'w3': {'kernel': np.random.randn(args.dim, transformers_config.intermediate_size).astype(np.float32)},
},
'attention_norm': {'kernel': np.random.randn(args.dim).astype(np.float32)},
'ffn_norm': {'kernel': np.random.randn(args.dim).astype(np.float32)},
} for _ in range(args.n_layers)
]
tok_embeddings = np.random.randn(args.vocab_size, args.dim).astype(np.float32)
norm = np.random.randn(args.dim).astype(np.float32)
output = np.random.randn(args.dim, args.vocab_size).astype(np.float32)
jax_transformer = jax_model.FlaxLLaMAForCausalLMModule(transformers_config, precision='highest')
jax_params = freeze({
'transformer': {
'wte': {'embedding': jnp.asarray(tok_embeddings)},
'ln_f': {'kernel': jnp.asarray(norm)},
'h': {'%d' % (i): layer_weights[i] for i in range(args.n_layers)},
},
'lm_head': {'kernel': jnp.asarray(output)},
})
jax_output = jax_transformer.apply(
{'params': jax_params},
jnp.asarray(x),
jnp.ones((args.max_batch_size, args.max_seq_len), dtype=np.int32),
jnp.broadcast_to(jnp.arange(args.max_seq_len, dtype=np.int32)[None, :], (args.max_batch_size, args.max_seq_len)),
).logits[:, -1, :]
jax_output = np.asarray(jax_output)
if is_llama3:
torch_transformer = model.Transformer(
model.ModelArgs(
vocab_size=args.vocab_size,
n_layers=args.n_layers,
dim=args.dim,
n_heads=args.n_heads,
n_kv_heads=kv_heads,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
norm_eps=args.norm_eps,
rope_theta=args.rope_theta,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
),
)
else:
torch_transformer = model.Transformer(
model.ModelArgs(
vocab_size=args.vocab_size,
n_layers=args.n_layers,
dim=args.dim,
n_heads=args.n_heads,
n_kv_heads=kv_heads,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
norm_eps=args.norm_eps,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
),
)
torch_layer_weight = lambda i: {
"layers.%d.attention.wo.weight" % (i): torch.tensor(layer_weights[i]['attention']['wo']['kernel'].transpose()),
"layers.%d.attention.wq.weight" % (i): torch.tensor(layer_weights[i]['attention']['wq']['kernel'].transpose()),
"layers.%d.attention.wv.weight" % (i): torch.tensor(layer_weights[i]['attention']['wv']['kernel'].transpose()),
"layers.%d.attention.wk.weight" % (i): torch.tensor(layer_weights[i]['attention']['wk']['kernel'].transpose()),
"layers.%d.feed_forward.w1.weight" % (i): torch.tensor(layer_weights[i]['feed_forward']['w1']['kernel'].transpose()),
"layers.%d.feed_forward.w2.weight" % (i): torch.tensor(layer_weights[i]['feed_forward']['w2']['kernel'].transpose()),
"layers.%d.feed_forward.w3.weight" % (i): torch.tensor(layer_weights[i]['feed_forward']['w3']['kernel'].transpose()),
"layers.%d.attention_norm.weight" % (i): torch.tensor(layer_weights[i]['attention_norm']['kernel']),
"layers.%d.ffn_norm.weight" % (i): torch.tensor(layer_weights[i]['ffn_norm']['kernel']),
}
torch_transformer.load_state_dict({
"tok_embeddings.weight": torch.tensor(tok_embeddings),
"norm.weight": torch.tensor(norm),
"output.weight": torch.tensor(output.transpose()),
**functools.reduce(lambda x, y: {**x, **y}, [torch_layer_weight(i) for i in range(args.n_layers)]),
}) # load weights
torch_output = torch_transformer(torch.tensor(x), 0)[:, -1, :]
torch_output = torch_output.detach().numpy()
assert np.allclose(jax_output, torch_output, atol=atol), f"Transformer test {test_n} failed"
errs.append(np.max(np.abs(jax_output - torch_output)))
return np.asarray(errs, dtype=np.float32)
def test_Tokenizer(tokenizer_path: str, is_llama3: bool, test_strs: List[str]) -> None:
if is_llama3:
jax_tokenizer = LLaMA3Tokenizer(tokenizer_path)
else:
jax_tokenizer = LLaMA2Tokenizer(tokenizer_path)
torch_tokenizer = Tokenizer(tokenizer_path)
for str_ in test_strs:
jax_tokens = jax_tokenizer.encode(str_, bos=True, eos=False)
torch_tokens = torch_tokenizer.encode(str_, bos=True, eos=False)
assert jax_tokens == torch_tokens, f"Tokenizer test failed for string: {str_}"
assert jax_tokenizer.decode(jax_tokens) == torch_tokenizer.decode(torch_tokens), f"Tokenizer test failed for string: {str_}"
def test_ModelLogits(ckpt_dir: str, tokenizer_path: str, is_llama3: bool, local_rank: int, world_size: int, test_strs: List[str], atol: float) -> Optional[float]:
assert torch.cuda.is_available(), "CUDA is not available."
assert jax.lib.xla_bridge.get_backend().platform == "gpu"
# load jax model
if local_rank == 0:
jax_generator = jax_load(
ckpt_dir,
tokenizer_path,
is_llama3,
max_seq_length=8192 if is_llama3 else 2048,
precision='highest',
)
jax_model, jax_params = jax_generator.model, jax_generator.params
tokenizer, mesh = jax_generator.tokenizer, jax_generator.mesh
tokens = [tokenizer.encode(x, bos=True, eos=False) for x in test_strs]
# jit model call
@jax.jit
def get_logits(params: jnp.ndarray, tokens: jnp.ndarray) -> jnp.ndarray:
tokens = with_named_sharding_constraint(tokens, mesh, P("dp", None))
logits = jax_model(
in_array,
params=params,
).logits[:, -1, :]
logits = with_named_sharding_constraint(logits, mesh, P("dp", None))
return logits
# get logits
jax_logits = []
for k in range(len(tokens)):
in_array = jnp.asarray(tokens[k][:jax_model.config.max_sequence_length])[None]
jax_logits.append(get_logits(jax_params, in_array))
jax_logits = np.asarray(jnp.concatenate(jax_logits, axis=0))
# unload jax model
del jax_model
del jax_params
del get_logits
# wait for jax process
torch.distributed.barrier()
# get pytorch logits
torch_generator = torch_load.build(
ckpt_dir,
tokenizer_path,
max_seq_len=8192 if is_llama3 else 2048,
max_batch_size=1,
model_parallel_size=world_size,
seed=1,
)
torch_model, tokenizer = torch_generator.model, torch_generator.tokenizer
tokens = [tokenizer.encode(x, bos=True, eos=False) for x in test_strs]
torch_logits = []
for k in range(len(tokens)):
in_array = torch.tensor(tokens[k][:torch_model.params.max_seq_len]).long().cuda().unsqueeze(0)
torch_logits.append(torch_model.forward(in_array, 0)[:, -1, :])
torch_logits = torch.cat(torch_logits, dim=0).detach().cpu().numpy()
# unload pytorch model
del torch_generator
del torch_model
if local_rank == 0:
assert np.allclose(jax_logits, torch_logits, atol=atol), "ModelLogits test failed"
return np.max(np.abs(jax_logits - torch_logits).reshape(len(test_strs), -1), axis=1)
return None
def test_ModelGenerations(ckpt_dir: str, tokenizer_path: str, is_llama3: bool, local_rank: int, world_size: int, test_strs: List[str], gen_len: int=32) -> None:
assert torch.cuda.is_available(), "CUDA is not available."
assert jax.lib.xla_bridge.get_backend().platform == "gpu"
if local_rank == 0:
# load jax model
jax_generator = jax_load(
ckpt_dir,
tokenizer_path,
is_llama3,
max_seq_length=8192 if is_llama3 else 2048,
# precision='highest',
)
jax_strs = jax_generator.generate_from_str(test_strs, max_gen_len=gen_len, temperature=0.0, top_p=1.0)
# unload jax model
del jax_generator
# wait for jax process
torch.distributed.barrier()
# get pytorch strs
torch_generator = torch_load.build(
ckpt_dir,
tokenizer_path,
max_seq_len=8192 if is_llama3 else 2048,
max_batch_size=len(test_strs),
model_parallel_size=world_size,
seed=1,
)
torch_strs = torch_generator.text_completion(test_strs, max_gen_len=gen_len, temperature=0.0, top_p=1.0)
torch_strs = list(map(lambda x: x['generation'], torch_strs))
# unload pytorch model
del torch_generator.model
del torch_generator
if local_rank == 0:
assert all([jax_strs[i].removeprefix('<|begin_of_text|>').strip().removeprefix(test_strs[i]).strip() == torch_strs[i].strip() for i in range(len(test_strs))]), "ModelGenerations test failed"
def main(ckpt_dir: str, tokenizer_path: str, is_llama3: bool=False):
np.random.seed(0)
local_rank, world_size = setup_model_parallel()
with torch.no_grad():
with jax.default_device(jax.devices('cpu')[0]):
if world_size == 1:
print('='*10)
print("[Testing RMSNorm]")
errs = test_RMSNorm(ModelArgs(), 128, atol=1e-2)
print("[Passed]")
print("Max RMSNorm error: %f" % (np.max(errs)))
print("Mean RMSNorm error: %f" % (np.mean(errs)))
print("Median RMSNorm error: %f" % (np.median(errs)))
print('='*10)
print('='*10)
print("[Testing precompute_freqs_cis]")
errs = test_precompute_freqs_cis(ModelArgs(), atol=1e-2)
print("[Passed]")
print("Max precompute_freqs_cis error: %f" % (np.max(errs)))
print("Mean precompute_freqs_cis error: %f" % (np.mean(errs)))
print("Median precompute_freqs_cis error: %f" % (np.median(errs)))
print('='*10)
print('='*10)
print("[Testing apply_rotary_emb]")
errs0, errs1 = test_apply_roary_emb(ModelArgs(), 128, atol=1e-2)
print("[Passed]")
print("Max apply_rotary_emb error: %f, %f" % (np.max(errs0), np.max(errs1)))
print("Mean apply_rotary_emb error: %f, %f" % (np.mean(errs0), np.mean(errs1)))
print("Median apply_rotary_emb error: %f, %f" % (np.median(errs0), np.median(errs1)))
print('='*10)
print('='*10)
print("[Testing Attention]")
errs = test_Attention(ModelArgs(), 128, atol=1e-2, is_llama3=is_llama3)
print("[Passed]")
print("Max Attention error: %f" % (np.max(errs)))
print("Mean Attention error: %f" % (np.mean(errs)))
print("Median Attention error: %f" % (np.median(errs)))
print('='*10)
print('='*10)
print("[Testing FeedForward]")
errs = test_feedForward(ModelArgs(), 128, atol=1e-2)
print("[Passed]")
print("Max FeedForward error: %f" % (np.max(errs)))
print("Mean FeedForward error: %f" % (np.mean(errs)))
print("Median FeedForward error: %f" % (np.median(errs)))
print('='*10)
print('='*10)
print("[Testing TransformerBlock]")
errs = test_TransformerBlock(ModelArgs(), 128, atol=1e-2, is_llama3=is_llama3)
print("[Passed]")
print("Max TransformerBlock error: %f" % (np.max(errs)))
print("Mean TransformerBlock error: %f" % (np.mean(errs)))
print("Median TransformerBlock error: %f" % (np.median(errs)))
print('='*10)
print('='*10)
print("[Testing Transformer]")
errs = test_Transformer(ModelArgs(), 128, atol=1e-2, is_llama3=is_llama3)
print("[Passed]")
print("Max Transformer error: %f" % (np.max(errs)))
print("Mean Transformer error: %f" % (np.mean(errs)))
print("Median Transformer error: %f" % (np.median(errs)))
print('='*10)
if local_rank == 0:
print('='*10)
print("[Testing Tokenizer]")
test_Tokenizer(
tokenizer_path,
is_llama3,
[
"The capital of Germany is the city of",
"Here is my sonnet in the style of Shakespeare about an artificial intelligence:",
],
)
print("[Passed]")
print('='*10)
if local_rank == 0:
print('='*10)
print("[Testing ModelLogits]")
torch.distributed.barrier()
errs = test_ModelLogits(
ckpt_dir,
tokenizer_path,
is_llama3,
local_rank,
world_size,
[
"The capital of Germany is the city of",
"Here is my sonnet in the style of Shakespeare about an artificial intelligence:",
],
atol=5e-1,
)
if local_rank == 0:
print("[Passed]")
print("Max ModelLogits error: %f" % (np.max(errs)))
print("Mean ModelLogits error: %f" % (np.mean(errs)))
print("Median ModelLogits error: %f" % (np.median(errs)))
print('='*10)
if local_rank == 0:
print('='*10)
print("[Testing ModelGenerations]")
torch.distributed.barrier()
test_ModelGenerations(
ckpt_dir,
tokenizer_path,
is_llama3,
local_rank,
world_size,
[
"The capital of Germany is the city of",
"The translation of \"hello world\" to Spanish is",
],
gen_len=32,
)
if local_rank == 0:
print("[Passed]")
print('='*10)
if __name__ == "__main__":
fire.Fire(main)