-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4 MOEA D.py
231 lines (188 loc) · 7.84 KB
/
4 MOEA D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import numpy as np
import matplotlib.pyplot as plt
from memory_profiler import memory_usage
import time
# Define benchmark functions (20 functions in total)
def ackley(x):
x = np.array(x)
a, b, c = 20, 0.2, 2 * np.pi
d = len(x)
sum1 = np.sum(x**2)
sum2 = np.sum(np.cos(c * x))
return -a * np.exp(-b * np.sqrt(sum1 / d)) - np.exp(sum2 / d) + a + np.exp(1)
def booth(x):
x = np.array(x)
return (x[0] + 2 * x[1] - 7)**2 + (2 * x[0] + x[1] - 5)**2
def rastrigin(x):
x = np.array(x)
A = 10
return A * len(x) + np.sum(x**2 - A * np.cos(2 * np.pi * x))
def rosenbrock(x):
x = np.array(x)
return np.sum(100 * (x[1:] - x[:-1]**2)**2 + (1 - x[:-1])**2)
def schwefel(x):
x = np.array(x)
return 418.9829 * len(x) - np.sum(x * np.sin(np.sqrt(np.abs(x))))
def sphere(x):
x = np.array(x)
return np.sum(x**2)
def michalewicz(x):
x = np.array(x)
m = 10
return -np.sum(np.sin(x) * np.sin(((np.arange(len(x)) + 1) * x**2) / np.pi)**(2 * m))
def zakharov(x):
x = np.array(x)
sum1 = np.sum(x**2)
sum2 = np.sum(0.5 * (np.arange(len(x)) + 1) * x)
return sum1 + sum2**2 + sum2**4
def eggholder(x):
x = np.array(x)
return -(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1] + 47)))) - x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47))))
def beale(x):
x = np.array(x)
return (1.5 - x[0] + x[0]*x[1])**2 + (2.25 - x[0] + x[0]*x[1]**2)**2 + (2.625 - x[0] + x[0]*x[1]**3)**2
def trid(x):
x = np.array(x)
return np.sum((x - 1)**2) - np.sum(x[:-1] * x[1:])
def dixon_price(x):
x = np.array(x)
return (x[0] - 1)**2 + np.sum([(i + 1) * (2 * x[i]**2 - x[i-1])**2 for i in range(1, len(x))])
def cross_in_tray(x):
x = np.array(x)
fact1 = np.sin(x[0]) * np.sin(x[1])
fact2 = np.exp(abs(100 - np.sqrt(x[0]**2 + x[1]**2) / np.pi))
return -0.0001 * (abs(fact1 * fact2) + 1)**0.1
def griewank(x):
x = np.array(x)
return 1 + np.sum(x**2 / 4000) - np.prod(np.cos(x / np.sqrt(np.arange(1, len(x) + 1))))
def levy(x):
x = np.array(x)
w = 1 + (x - 1) / 4
term1 = np.sin(np.pi * w[0])**2
term2 = np.sum((w[:-1] - 1)**2 * (1 + 10 * np.sin(np.pi * w[:-1] + 1)**2))
term3 = (w[-1] - 1)**2 * (1 + np.sin(2 * np.pi * w[-1])**2)
return term1 + term2 + term3
def matyas(x):
x = np.array(x)
return 0.26 * (x[0]**2 + x[1]**2) - 0.48 * x[0] * x[1]
def goldstein_price(x):
x = np.array(x)
term1 = 1 + ((x[0] + x[1] + 1)**2) * (19 - 14*x[0] + 3*x[0]**2 - 14*x[1] + 6*x[0]*x[1] + 3*x[1]**2)
term2 = 30 + ((2*x[0] - 3*x[1])**2) * (18 - 32*x[0] + 12*x[0]**2 + 48*x[1] - 36*x[0]*x[1] + 27*x[1]**2)
return term1 * term2
def powell(x):
x = np.array(x)
term1 = (x[0] + 10*x[1])**2
term2 = 5 * (x[2] - x[3])**2
term3 = (x[1] - 2*x[2])**4
term4 = 10 * (x[0] - x[3])**4
return term1 + term2 + term3 + term4
def bird(x):
x = np.array(x)
return np.sin(x[0]) * np.exp((1 - np.cos(x[1]))**2) + np.cos(x[1]) * np.exp((1 - np.sin(x[0]))**2) + (x[0] - x[1])**2
def pyramid(x):
x = np.array(x)
return np.sum(np.abs(x) * np.sin(x))
# MOEA/D Algorithm
def moead(funcs, bounds, population_size=50, generations=100, neighbor_size=10, weight_count=50):
dimensions = len(bounds)
objectives = len(funcs)
# Initialize weights for decomposition
weights = np.array([np.random.dirichlet(np.ones(objectives)) for _ in range(weight_count)])
neighbors = [np.argsort([np.linalg.norm(weights[i] - weights[j]) for j in range(weight_count)])[:neighbor_size] for i in range(weight_count)]
# Initialize population
population = [np.random.uniform([b[0] for b in bounds], [b[1] for b in bounds], dimensions) for _ in range(weight_count)]
z = np.min([np.array([f(ind) for f in funcs]) for ind in population], axis=0)
cost_history = []
for generation in range(generations):
for i in range(weight_count):
# Select neighbors
neighbor_indices = neighbors[i]
if len(neighbor_indices) < 2:
continue # Skip if not enough neighbors
indices = np.random.choice(neighbor_indices, 2, replace=False)
p1, p2 = population[indices[0]], population[indices[1]]
# Crossover
offspring = 0.5 * (p1 + p2)
# Mutation
offspring += np.random.uniform(-0.1, 0.1, dimensions)
# Clip to bounds
offspring = np.clip(offspring, [b[0] for b in bounds], [b[1] for b in bounds])
# Evaluate offspring
offspring_cost = np.array([f(offspring) for f in funcs])
# Update ideal point
z = np.minimum(z, offspring_cost)
# Update neighbors
for j in neighbor_indices:
g_old = np.max(weights[j] * (np.array([f(population[j]) for f in funcs]) - z))
g_new = np.max(weights[j] * (offspring_cost - z))
if g_new < g_old:
population[j] = offspring
# Save progress
population_costs = [np.array([f(ind) for f in funcs]) for ind in population]
cost_history.append(np.mean(population_costs, axis=0))
return population, cost_history
# Complexity Mapping Function
def map_complexity(n, g):
complexity_classes = {
"O(1)": 1,
"O(log n)": lambda n: np.log2(n),
"O(n)": lambda n: n,
"O(n log n)": lambda n: n * np.log2(n),
"O(n^2)": lambda n: n**2,
"O(n^3)": lambda n: n**3,
"O(2^n)": lambda n: 2**n,
"O(n!)": lambda n: np.math.factorial(n)
}
complexity = n * g
for label, func in complexity_classes.items():
if callable(func) and complexity <= func(n):
return label
return "O(n^2)"
# Benchmark functions and bounds
functions = [
("1. Ackley", ackley, [(-5, 5)] * 2),
("2. Booth", booth, [(-5, 5)] * 2),
("3. Rastrigin", rastrigin, [(-5, 5)] * 2),
("4. Rosenbrock", rosenbrock, [(-5, 5)] * 2),
("5. Schwefel", schwefel, [(-500, 500)] * 2),
("6. Sphere", sphere, [(-5, 5)] * 2),
("7. Michalewicz", michalewicz, [(0, np.pi)] * 2),
("8. Zakharov", zakharov, [(-5, 5)] * 2),
("9. Eggholder", eggholder, [(-512, 512)] * 2),
("10. Beale", beale, [(-4.5, 4.5)] * 2),
("11. Trid", trid, [(-5, 5)] * 2),
("12. Dixon-Price", dixon_price, [(-5, 5)] * 2),
("13. Cross-in-Tray", cross_in_tray, [(-10, 10)] * 2),
("14. Griewank", griewank, [(-600, 600)] * 2),
("15. Levy", levy, [(-10, 10)] * 2),
("16. Matyas", matyas, [(-10, 10)] * 2),
("17. Goldstein-Price", goldstein_price, [(-2, 2)] * 2),
("18. Powell", powell, [(-5, 5)] * 4),
("19. Bird", bird, [(-2 * np.pi, 2 * np.pi)] * 2),
("20. Pyramid", pyramid, [(-5, 5)] * 2)
]
# Run MOEA/D and visualize results
fig, axes = plt.subplots(4, 5, figsize=(20, 20))
axes = axes.ravel()
for idx, (name, func, bounds) in enumerate(functions):
print(f"\nRunning {name}...")
start_time = time.time()
memory_before = memory_usage()[0]
best_population, costs = moead([func], bounds, population_size=50, generations=100)
memory_after = memory_usage()[0]
end_time = time.time()
complexity_class = map_complexity(50, 100)
print(f"Function: {name}")
print(f"Best Cost: {costs[-1] if costs else 'N/A'}")
print(f"Convergence Time: {end_time - start_time:.10f} seconds")
print(f"Memory Usage: {memory_after - memory_before:.10f} MB")
print(f"Complexity Class (standard): {complexity_class}")
print(f"Complexity (previous form): O(n * g)")
if idx < len(axes):
axes[idx].plot([np.mean(c) for c in costs])
axes[idx].set_title(name)
axes[idx].set_xlabel("Generations")
axes[idx].set_ylabel("Cost")
plt.tight_layout()
plt.show()