-
Notifications
You must be signed in to change notification settings - Fork 0
/
Exp2SynNMDA-Copy1.mod
106 lines (85 loc) · 2.45 KB
/
Exp2SynNMDA-Copy1.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
COMMENT
Modified from ModelDB Accesion Code 184054: Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife
Author: Mark Cembrowski, 2012
This is an extension of the Exp2Syn class to incorporate NMDA-like properties,
and incorporates some NMDA features from Elena Saftenku, 2001.
First, Exp2Syn is described:
Two state kinetic scheme synapse described by rise time tau1,
and decay time constant tau2. The normalized peak condunductance is 1.
Decay time MUST be greater than rise time.
The solution of A->G->bath with rate constants 1/tau1 and 1/tau2 is
A = a*exp(-t/tau1) and
G = a*tau2/(tau2-tau1)*(-exp(-t/tau1) + exp(-t/tau2))
where tau1 < tau2
If tau2-tau1 -> 0 then we have a alphasynapse.
and if tau1 -> 0 then we have just single exponential decay.
The factor is evaluated in the
initial block such that an event of weight 1 generates a
peak conductance of 1.
Because the solution is a sum of exponentials, the
coupled equations can be solved as a pair of independent equations
by the more efficient cnexp method.
Next, two extensions have been included:
1. (ELIMINATED) Ca tracking, mimicking Ca influx through NMDA channels
2. Voltage gating, mimicking Mg block
ENDCOMMENT
NEURON {
POINT_PROCESS Exp2SynNMDA
RANGE tau1, tau2, e, i, mgBlock
NONSPECIFIC_CURRENT i
RANGE g, inmda
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
}
PARAMETER {
tau1=.1 (ms) <1e-9,1e9>
tau2 = 10 (ms) <1e-9,1e9>
e=0 (mV)
alpha_vspom = -0.06 (/mV)
v0_block = 0 (mV)
extMgConc = 1 (mM) : external Mg concentration
}
ASSIGNED {
v (mV)
i (nA)
g (uS)
factor
mgBlock
inmda (nA)
}
STATE {
A (uS)
B (uS)
}
INITIAL {
LOCAL tp
if (tau1/tau2 > .9999) {
tau1 = .9999*tau2
}
A = 0
B = 0
tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
factor = -exp(-tp/tau1) + exp(-tp/tau2)
factor = 1/factor
}
BREAKPOINT {
SOLVE state METHOD cnexp
g = B - A
mgBlock = vspom(v)
i = g*mgBlock*(v - e)
inmda = i
}
DERIVATIVE state {
A' = -A/tau1
B' = -B/tau2
}
NET_RECEIVE(weight (uS)) {
A = A + weight*factor
B = B + weight*factor
}
FUNCTION vspom (v(mV))( ){
vspom=1.50265/(1.+0.33*extMgConc*exp(alpha_vspom*(v-v0_block))) :Instantaneous activation, from Durstewitz, Seamans & Sejnowski (2000) J Neurophysiol 83, 1733-1750.
}