forked from ModelDBRepository/183300
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ampanmda.mod
195 lines (157 loc) · 5.24 KB
/
ampanmda.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
TITLE simple NMDA receptors
: Hines combined AMPA and NMDA and spike dependent plasticity
: Modified from the original AMPA.mod, M.Migliore Jan 2003
: A weight of 0.0035 gives a peak conductance of 1nS in 0Mg
COMMENT
-----------------------------------------------------------------------------
Simple model for glutamate AMPA receptors
=========================================
- FIRST-ORDER KINETICS, FIT TO WHOLE-CELL RECORDINGS
Whole-cell recorded postsynaptic currents mediated by AMPA/Kainate
receptors (Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994) were used
to estimate the parameters of the present model; the fit was performed
using a simplex algorithm (see Destexhe et al., J. Computational Neurosci.
1: 195-230, 1994).
- SHORT PULSES OF TRANSMITTER (0.3 ms, 0.5 mM)
The simplified model was obtained from a detailed synaptic model that
included the release of transmitter in adjacent terminals, its lateral
diffusion and uptake, and its binding on postsynaptic receptors (Destexhe
and Sejnowski, 1995). Short pulses of transmitter with first-order
kinetics were found to be the best fast alternative to represent the more
detailed models.
- ANALYTIC EXPRESSION
The first-order model can be solved analytically, leading to a very fast
mechanism for simulating synapses, since no differential equation must be
solved (see references below).
References
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. An efficient method for
computing synaptic conductances based on a kinetic model of receptor binding
Neural Computation 6: 10-14, 1994.
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
excitable membranes, synaptic transmission and neuromodulation using a
common kinetic formalism, Journal of Computational Neuroscience 1:
195-230, 1994.
-----------------------------------------------------------------------------
ENDCOMMENT
NEURON {
POINT_PROCESS AmpaNmda
RANGE R, g, mg, inmda, iampa, gnmda, gampa
RANGE x, mgid, ggid, srcgid, gmax
NONSPECIFIC_CURRENT i
GLOBAL Cdur, Alpha, Beta, E, Rinf, Rtau, ampatau
GLOBAL gampafactor, nmdafactor
GLOBAL ltdinvl, ltpinvl, sighalf, sigslope
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
(mM) = (milli/liter)
}
PARAMETER {
Cdur = 1 (ms) : transmitter duration (rising phase)
Alpha = 0.35 (/ms) : forward (binding) rate
Beta = 0.035 (/ms) : backward (unbinding) rate
E = 0 (mV) : reversal potential
mg = 1 (mM) : external magnesium concentration
gmax = 2 (umho)
gampafactor = 0.001 (1)
nmdafactor = 0.0035 (1)
ltdinvl = 250 (ms) : longer intervals, no change
ltpinvl = 33.33 (ms) : shorter interval, LTP
sighalf = 25 (1)
sigslope = 3 (1)
ampatau = 3 (ms)
x = 0 (um) : cartesian synapse location
mgid = -1 : associated mitral gid
ggid = -1 : associated granule gid
srcgid = -1 : gid of the mitral detector
}
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : total current = iampa+inmda
inmda (nA) : current = gnmda*(v - E)
iampa (nA) : current = gampa*(v - E)
gnmda (umho) :
Rinf : steady state channels open
Rtau (ms) : time constant of channel binding
synon
}
STATE {Ron Roff
gampa (umho)
}
INITIAL {
PROTECT Rinf = Alpha / (Alpha + Beta)
PROTECT Rtau = 1 / (Alpha + Beta)
synon = 0
gampa = 0
}
BREAKPOINT {
SOLVE release METHOD cnexp
gnmda = mgblock(v)*(Ron + Roff)*gmax*nmdafactor
inmda = gnmda*(v - E)
iampa = gampa*(v - E)
i = iampa + inmda
}
DERIVATIVE release {
Ron' = (synon*Rinf - Ron)/Rtau
Roff' = -Beta*Roff
gampa' = -gampa/ampatau
}
: following supports both saturation from single input and
: summation from multiple inputs
: if spike occurs during CDur then new off time is t + CDur
: ie. transmitter concatenates but does not summate
: Note: automatic initialization of all reference args to 0 except first
FUNCTION mgblock(v(mV)) {
TABLE
DEPEND mg
FROM -140 TO 80 WITH 1000
: from Jahr & Stevens
mgblock = 1 / (1 + exp(0.062 (/mV) * -v) * (mg / 3.57 (mM)))
}
FUNCTION plast(step(1))(1) {
plast = 1 - 1/(1 + exp((step - sighalf)/sigslope))
}
FUNCTION norm_weight_to_sig(w) {
norm_weight_to_sig = floor(0.4999 + log(((-1/(w-1))-1)/exp(-sighalf/sigslope))*sigslope)
}
NET_RECEIVE(weight, s, w, tlast (ms), r0, t0 (ms)) {
INITIAL {
s = 0
w = 0
tlast = -1e9 (ms)
r0 = 0
t0 = -1e9 (ms)
}
: flag is an implicit argument of NET_RECEIVE and normally 0
if (flag == 0) { : a spike, so turn on if not already in a Cdur pulse
: plasticity affects this spike. If desired to affect
: the next spike then put following group after
: net_send
if (t - tlast < ltpinvl) { : LTP
s = s + 1
if (s > 2*sighalf) { s = 2*sighalf }
}else if (t - tlast > ltdinvl) { : no change
}else{ : LTD
s = s - 1
if (s < 0) { s = 0 }
}
tlast = t
w = weight : turn plasticity off, to turn on use weight*plast(s)
gampa = gampa + w*gmax*gampafactor
r0 = r0*exp(-Beta*(t - t0))
t0 = t
synon = synon + w
Ron = Ron + r0
Roff = Roff - r0
: come again in Cdur with flag = current value of w+1
net_send(Cdur, w + 1)
}else{ : turn off what was added Cdur ago
r0 = (flag-1)*Rinf + (r0 - (flag-1)*Rinf)*exp(-(t - t0)/Rtau)
t0 = t
synon = synon - (flag-1)
Ron = Ron - r0
Roff = Roff + r0
}
}