-
Notifications
You must be signed in to change notification settings - Fork 20
/
voc_layers.py
233 lines (185 loc) · 7.13 KB
/
voc_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import caffe
import numpy as np
from PIL import Image
import random
class VOCSegDataLayer(caffe.Layer):
"""
Load (input image, label image) pairs from PASCAL VOC
one-at-a-time while reshaping the net to preserve dimensions.
Use this to feed data to a fully convolutional network.
"""
def setup(self, bottom, top):
"""
Setup data layer according to parameters:
- voc_dir: path to PASCAL VOC year dir
- split: train / val / test
- mean: tuple of mean values to subtract
- randomize: load in random order (default: True)
- seed: seed for randomization (default: None / current time)
for PASCAL VOC semantic segmentation.
example
params = dict(voc_dir="/path/to/PASCAL/VOC2011",
mean=(104.00698793, 116.66876762, 122.67891434),
split="val")
"""
# config
params = eval(self.param_str)
self.voc_dir = params['voc_dir']
self.split = params['split']
self.mean = np.array(params['mean'])
self.random = params.get('randomize', True)
self.seed = params.get('seed', None)
# two tops: data and label
if len(top) != 2:
raise Exception("Need to define two tops: data and label.")
# data layers have no bottoms
if len(bottom) != 0:
raise Exception("Do not define a bottom.")
# load indices for images and labels
split_f = '{}/ImageSets/Segmentation/{}.txt'.format(self.voc_dir,
self.split)
self.indices = open(split_f, 'r').read().splitlines()
self.idx = 0
# make eval deterministic
if 'train' not in self.split:
self.random = False
# randomization: seed and pick
if self.random:
random.seed(self.seed)
self.idx = random.randint(0, len(self.indices)-1)
def reshape(self, bottom, top):
# load image + label image pair
self.data = self.load_image(self.indices[self.idx])
self.label = self.load_label(self.indices[self.idx])
# reshape tops to fit (leading 1 is for batch dimension)
top[0].reshape(1, *self.data.shape)
top[1].reshape(1, *self.label.shape)
def forward(self, bottom, top):
# assign output
top[0].data[...] = self.data
top[1].data[...] = self.label
# pick next input
if self.random:
self.idx = random.randint(0, len(self.indices)-1)
else:
self.idx += 1
if self.idx == len(self.indices):
self.idx = 0
def backward(self, top, propagate_down, bottom):
pass
def load_image(self, idx):
"""
Load input image and preprocess for Caffe:
- cast to float
- switch channels RGB -> BGR
- subtract mean
- transpose to channel x height x width order
"""
im = Image.open('{}/JPEGImages/{}.jpg'.format(self.voc_dir, idx))
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
#print(idx)
in_ -= self.mean
in_ = in_.transpose((2,0,1))
return in_
def load_label(self, idx):
"""
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
im = Image.open('{}/SegmentationClass/{}.png'.format(self.voc_dir, idx))
label = np.array(im, dtype=np.uint8)
label = label[np.newaxis, ...]
return label
class SBDDSegDataLayer(caffe.Layer):
"""
Load (input image, label image) pairs from the SBDD extended labeling
of PASCAL VOC for semantic segmentation
one-at-a-time while reshaping the net to preserve dimensions.
Use this to feed data to a fully convolutional network.
"""
def setup(self, bottom, top):
"""
Setup data layer according to parameters:
- sbdd_dir: path to SBDD `dataset` dir
- split: train / seg11valid
- mean: tuple of mean values to subtract
- randomize: load in random order (default: True)
- seed: seed for randomization (default: None / current time)
for SBDD semantic segmentation.
N.B.segv11alid is the set of segval11 that does not intersect with SBDD.
Find it here: https://gist.github.com/shelhamer/edb330760338892d511e.
example
params = dict(sbdd_dir="/path/to/SBDD/dataset",
mean=(104.00698793, 116.66876762, 122.67891434),
split="valid")
"""
# config
params = eval(self.param_str)
self.sbdd_dir = params['sbdd_dir']
self.split = params['split']
self.mean = np.array(params['mean'])
self.random = params.get('randomize', True)
self.seed = params.get('seed', None)
# two tops: data and label
if len(top) != 2:
raise Exception("Need to define two tops: data and label.")
# data layers have no bottoms
if len(bottom) != 0:
raise Exception("Do not define a bottom.")
# load indices for images and labels
split_f = '{}/{}.txt'.format(self.sbdd_dir,
self.split)
self.indices = open(split_f, 'r').read().splitlines()
self.idx = 0
# make eval deterministic
if 'train' not in self.split:
self.random = False
# randomization: seed and pick
if self.random:
random.seed(self.seed)
self.idx = random.randint(0, len(self.indices)-1)
def reshape(self, bottom, top):
# load image + label image pair
self.data = self.load_image(self.indices[self.idx])
self.label = self.load_label(self.indices[self.idx])
# reshape tops to fit (leading 1 is for batch dimension)
top[0].reshape(1, *self.data.shape)
top[1].reshape(1, *self.label.shape)
def forward(self, bottom, top):
# assign output
top[0].data[...] = self.data
top[1].data[...] = self.label
# pick next input
if self.random:
self.idx = random.randint(0, len(self.indices)-1)
else:
self.idx += 1
if self.idx == len(self.indices):
self.idx = 0
def backward(self, top, propagate_down, bottom):
pass
def load_image(self, idx):
"""
Load input image and preprocess for Caffe:
- cast to float
- switch channels RGB -> BGR
- subtract mean
- transpose to channel x height x width order
"""
im = Image.open('{}/img/{}.jpg'.format(self.sbdd_dir, idx))
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
in_ -= self.mean
in_ = in_.transpose((2,0,1))
return in_
def load_label(self, idx):
"""
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
import scipy.io
mat = scipy.io.loadmat('{}/cls/{}.mat'.format(self.sbdd_dir, idx))
label = mat['GTcls'][0]['Segmentation'][0].astype(np.uint8)
label = label[np.newaxis, ...]
return label