-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathforestplot.R
93 lines (91 loc) · 4.09 KB
/
forestplot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
setwd("//mcrfnas2/bigdata/Genetic/Projects/shg047/methylation/chol/phase2")
data= read_excel("methylation.xlsx",sheet = 2)
data= as.data.frame(data)
rowname<-apply(data.frame(data$Target,as.character(data$GenomePosition)),1,function(x) gsub(" ","",paste(x[1],x[2],sep="")))
methdata<-data.matrix(data[,c(7:176)])
rownames(methdata)<-rowname
genesymbol= unlist(lapply(data$Target, function(x) strsplit(as.character(x),"_")[[1]][1]))
head(rowname)
phen=as.numeric(colnames(methdata)) %%2 # 0 control, 1 case
methdata=data.frame(phen,t(methdata))
methdata[1:5,1:5]
Table2Generator = function(methydata){
seq.case = which(methydata[,1] ==0)
seq.control = which(methydata[,1] == 1)
#Mean Case, Mean Control, Pvalue and Adjusted Pvalue
McaM = apply(methydata[,-1],2,function(x) {return( mean(x[seq.case], na.rm=T))} )
McoM = apply(methydata[,-1],2,function(x) {return( mean(x[seq.control], na.rm=T))} )
Pvalue=apply(methydata[,-1],2,function(x) {return( wilcox.test(x[seq.control], x[seq.case])$p.value)})
Pvalue=p.adjust(Pvalue,method="fdr")
#Logistic regression analysis
library("pROC")
OR =c()
CI.upper = c()
CI.lower = c()
Logistic.P = c()
Sens=c()
Spec=c()
AUC =c()
for(i in 1:(dim(methydata)[2] -1 )){
temp = methydata[,c(1,i+1 )]
glm.fit = glm(temp[,1] ~ temp[,2], data = temp, family = "binomial")
OR[i] = log(exp(summary(glm.fit)$coefficients[2,1]),base = 10)
Logistic.P[i] = summary(glm.fit)$coefficients[2,4]
CI.upper[i] = log(exp(confint(glm.fit)[2,2]),base = 10)
CI.lower[i] = log(exp(confint(glm.fit)[2,1]),base = 10)
#Do the analysis of the sens, spec, and AUC
predicted.value = predict(glm.fit,type=c("response"))
predicted.data = data.frame(Type=na.omit(temp)[,1], predicted.value)
logistic.rocobj = roc(predicted.data$Type, predicted.data$predicted.value,smooth = FALSE)
logistic.rocdata = data.frame(Sens = logistic.rocobj$sensitivities, Spec = logistic.rocobj$specificities)
AUC[i] = logistic.rocobj$auc[[1]]
#Find the best Sens and Spec
logistic.rocdata[,3] = logistic.rocdata[,1] + logistic.rocdata[,2]
seq.max = which(logistic.rocdata[,3] == max(logistic.rocdata[,3]))
Sens[i] = logistic.rocdata[seq.max,1]
Spec[i] = logistic.rocdata[seq.max,2]
print(paste(i,colnames(methydata)[i]))
}
Logistic.P = p.adjust(Logistic.P, method = "fdr")
options(digits = 2)
Table = data.frame(McaM, McoM, Pvalue, OR, CI.upper, CI.lower, Logistic.P, Sens,Spec, AUC)
return(Table)
}
Table<-Table2Generator(methdata)
write.table(Table,file="chol.rlt.txt",sep="\t",quote=F,col.names = NA,row.names =T)
methdata[1:5,1:5]
GeneSymbol<-unique(sapply(colnames(methdata)[2:ncol(methdata)],function(x) unlist(strsplit(x,split="[_]"))[[1]]))
# GeneSymbol<-GeneSymbol[-grep("cg",GeneSymbol)]
OR<-c()
Logistic.P<-c()
CI.upper<-c()
CI.lower<-c()
Group<-c()
for(i in 1:length(GeneSymbol)){
data<-methdata[,grep(GeneSymbol[i],colnames(methdata))]
newdata<-apply(data,1,function(x) mean(x,na.rm=T))
phen=as.numeric(rownames(data)) %%2 # 0 control, 1 case
glm.fit = glm(phen ~ newdata, family = "binomial")
OR[i] = log(exp(summary(glm.fit)$coefficients[2,1]),base = 10)
Logistic.P[i] = summary(glm.fit)$coefficients[2,4]
CI.upper[i] = log(exp(confint(glm.fit)[2,2]),base = 10)
CI.lower[i] = log(exp(confint(glm.fit)[2,1]),base = 10)
Group<-c(Group,GeneSymbol[i])
}
Table = data.frame(OR,LowerLimit=CI.lower,UpperLimit=CI.upper,Group)
dim(Table)
Table=Table[order(Table$OR),]
head(Table)
p = ggplot(data=Table,
aes(x = Group,y = OR, ymin = LowerLimit, ymax = UpperLimit))+
geom_pointrange(aes(col=Group))+
geom_hline(aes(fill=Group),yintercept =1, linetype=2)+
xlab('Group')+ ylab("Odds Ratio (95% Confidence Interval)")+
coord_flip() + geom_errorbar(aes(ymin=LowerLimit, ymax=UpperLimit,col=Group),width=0.5,cex=1)+
theme(plot.title=element_text(size=16,face="bold"),
axis.text.x=element_text(size=10,face="bold"),
axis.text.y=element_text(size=10,face="bold"),
axis.title=element_text(size=12,face="bold"),
strip.text.y = element_text(hjust=0,vjust = 1,angle=180,face="bold"))+
theme(legend.position="none")
p