-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDMR.CHAMP.R
67 lines (60 loc) · 3.91 KB
/
DMR.CHAMP.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
DMR.CHAMP<-function(){
library("ChAMP")
Rlt<-list()
samplesheetFile=list.files(pattern="*csv")
ProjectName=unlist(strsplit(samplesheetFile,"[.]"))[1]
# be sure to remove header of the samplesheet
sampleinfo<-read.table(samplesheetFile,head=T,sep="\t",as.is=T)
sampleinfo
system("mkdir resultsChamp")
# champ.process(fromIDAT = TRUE, fromFile = FALSE, directory = getwd(), resultsDir =paste(getwd(), "resultsChamp", sep = "/"), methValue = "B", filterDetP = TRUE,
# detPcut = 0.01, filterXY = TRUE, removeDetP = 0, filterBeads = TRUE, beadCutoff =
# 0.05, filterNoCG = FALSE, QCimages = TRUE, batchCorrect = FALSE, runSVD =
# TRUE, studyInfo = FALSE, infoFactor = c(), norm = "BMIQ", adjust.method = "BH",
# adjPVal = 0.05, runDMR = TRUE, runCNA = FALSE, plotBMIQ = FALSE, DMRpval = 0.05,
# sampleCNA=FALSE,plotSample = TRUE,groupFreqPlots=TRUE,freqThreshold=0.3, bedFile
# = TRUE, methProfile = TRUE, controlProfile = FALSE)
myLoad<-champ.load(directory = getwd(),filterDetP=F,filterBeads=F,QCimages = F,filterXY=F,filterSNPs=F,filterMultiHit=F)
# champ.CNA(intensity = myLoad$intensity, pd = myLoad$pd, loadFile = FALSE, batchCorrect = TRUE,
# file = "intensity.txt", resultsDir = paste(getwd(), "resultsChamp", sep = "/"),
# sampleCNA=TRUE, plotSample=TRUE, filterXY = TRUE, groupFreqPlots=TRUE,freqThreshold=0.3,
# control=TRUE,controlGroup="Control")
# turn off the plot if you run it on the server since of the problem of X11
myNorm<-champ.norm(beta = myLoad$beta, rgSet = myLoad$rgSet, pd = myLoad$pd, mset = myLoad$mset,sampleSheet = samplesheet, resultsDir = paste(getwd(), "resultsChamp",sep = "/"), methValue = "B", fromIDAT = TRUE, norm = "BMIQ", fromFile = FALSE, betaFile,filter = FALSE, filterXY = FALSE, QCimages = F, plotBMIQ = F)
# identify MVP and it would be used in DMR calling
mylimma=champ.MVP(beta.norm = myNorm$beta, pd = data.frame(myLoad$pd), adjPVal = 0.5, adjust.method = "BH",compare.group = c("R","S"), resultsDir = paste(getwd(), "resultsChamp", sep = "/"),bedFile = T)
# Do DMR calling and save it to result2
library("doParallel")
result2=champ.DMR(betaNorm=myNorm$beta,design=myLoad$pd$Sample_Group,maxGap=300,
cutoff=0.1,minProbes=3,smooth=TRUE,smoothFunction=loessByCluster,
useWeights=FALSE,permutations=NULL,B=10,pickCutoff=FALSE,
pickCutoffQ=0.99,nullMethod="bootstrap",verbose=TRUE,cores=3,arraytype="450K",
method = "Bumphunter",resultsFile=mylimma,meanLassoRadius=375,minSigProbesLasso=3,minDmrSep=1000,
minDmrSize=50,adjPvalProbe=0.5,adjPvalDmr=0.5,pData=myLoad$pd)
Fileout1<-paste(ProjectName,"resultsChamp.tar.gz",sep=".")
Fileout2<-paste(ProjectName,"result.txt",sep=".")
## Manhattan Plot
ManhattanPlot(mylimma)
## PCA Analysis
PCAPlot(t(myNorm$beta),myLoad$pd$Sample_Group,ProjectName,multifigure=T)
## Cluster Analysis
pheno<-myLoad$pd[match(colnames(myNorm$beta),myLoad$pd$Sample_Name),]$PublishID
ClusterAnalysisPlot(myNorm$beta,pheno,suffix=ProjectName)
## TSNE ANLAYIS
phen<-myLoad$pd[match(colnames(myNorm$beta),myLoad$pd$Sample_Name),]$Sample_Group
TSNEAnalysis(t(myNorm$beta),pheno,prefix="TwinSomie")
## Heatmap Plot to DMR regions
phen<-myLoad$pd[match(colnames(myNorm$beta),myLoad$pd$Sample_Name),]$Sample_Group
HeatMap(myNorm$beta,phen=phen,varselect=1000,plot="heatmap.pdf",cexRow = 0.01,cexCol = 1.2,Colv=T,Rowv=T)
## MDS analysis
pheno<-myLoad$pd[match(colnames(myNorm$beta),myLoad$pd$Sample_Name),]$PublishID
MDSPlot(t(myNorm$beta),phen=pheno,prefix="TwinSmoke")
cmd=paste("tar czvf ",Fileout1," ./resultsChamp",sep="");
system(cmd)
# write.table(result2,file=Fileout2,col.names=NA,row.names=T,sep="\t",quote=F)
Rlt$dmr=result2
Rlt$myNorm=myNorm
Rlt$mylimma=mylimma
Rlt$myLoad=myLoad
return(Rlt)
}