-
Notifications
You must be signed in to change notification settings - Fork 29
/
transformer_gsam_utils.py
221 lines (178 loc) · 7.23 KB
/
transformer_gsam_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import cv2
import os
import torch
import requests
import numpy as np
from dataclasses import dataclass
from PIL import Image
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
from torchvision import transforms
from typing import Any, List, Dict, Optional, Union, Tuple
def load_image(image_str: str) -> Image.Image:
if image_str.startswith("http"):
image = Image.open(requests.get(image_str, stream=True).raw).convert("RGB")
else:
image = Image.open(image_str).convert("RGB")
return image
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
def __getitem__(self, key):
if isinstance(key, str):
# Access by attribute name
if hasattr(self, key):
return getattr(self, key)
else:
raise KeyError(f"'{key}' is not a valid attribute.")
elif isinstance(key, int):
# Access by index (in order of definition)
attributes = [self.score, self.label, self.box, self.mask]
if 0 <= key < len(attributes):
return attributes[key]
else:
raise IndexError("Index out of range.")
else:
raise TypeError("Key must be of type str or int.")
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
boxes = []
for result in results:
xyxy = result.box.xyxy
boxes.append(xyxy)
return [boxes]
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
# Find contours in the binary mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the contour with the largest area
largest_contour = max(contours, key=cv2.contourArea)
# Extract the vertices of the contour
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
"""
Convert a polygon to a segmentation mask.
Args:
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
- image_shape (tuple): Shape of the image (height, width) for the mask.
Returns:
- np.ndarray: Segmentation mask with the polygon filled.
"""
# Create an empty mask
mask = np.zeros(image_shape, dtype=np.uint8)
# Convert polygon to an array of points
pts = np.array(polygon, dtype=np.int32)
# Fill the polygon with white color (255)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float()
masks = masks.permute(0, 2, 3, 1)
masks = masks.mean(axis=-1)
masks = (masks > 0).int()
masks = masks.numpy().astype(np.uint8)
masks = list(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
masks[idx] = mask
return masks
def detect(
image: Image.Image,
labels: List[str],
threshold: float = 0.3,
detector_id: Optional[str] = None
) -> List[Dict[str, Any]]:
"""
Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
detector_id = detector_id if detector_id is not None else "IDEA-Research/grounding-dino-tiny"
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=device)
labels = [label if label.endswith(".") else label+"." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
results = [DetectionResult.from_dict(result) for result in results]
return results
def segment(
image: Image.Image,
detection_results: List[Dict[str, Any]],
polygon_refinement: bool = False,
segmenter_id: Optional[str] = None
) -> List[DetectionResult]:
"""
Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
segmenter_id = segmenter_id if segmenter_id is not None else "facebook/sam-vit-base"
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device)
processor = AutoProcessor.from_pretrained(segmenter_id)
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device)
outputs = segmentator(**inputs)
masks = processor.post_process_masks(
masks=outputs.pred_masks,
original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes
)[0]
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(
image: Union[Image.Image, str],
labels: List[str],
threshold: float = 0.3,
polygon_refinement: bool = False,
detector_id: Optional[str] = None,
segmenter_id: Optional[str] = None
) -> Tuple[np.ndarray, List[DetectionResult]]:
if isinstance(image, str):
image = load_image(image)
detections = detect(image, labels, threshold, detector_id)
detections = segment(image, detections, polygon_refinement, segmenter_id)
# Iterate over detections and add bounding boxes and masks
max_index = max(range(len(detections)), key=lambda i: detections[i].score)
mask = detections[max_index].mask
# If mask is available, apply it
if mask is not None:
# Convert mask to uint8
print(np.max(mask), np.min(mask))
return mask
if __name__ == '__main__':
detector_id = "IDEA-Research/grounding-dino-tiny"
segmenter_id = "facebook/sam-vit-base"
transform = transforms.ToTensor()
for root, _, files in os.walk('./data/1cele/donald trump'):
mask_save_path = root.replace(f'{os.path.basename(root)}', f'{os.path.basename(root)} mask')
os.makedirs(mask_save_path, exist_ok=True)
for file in files:
print(file, root)
GSAM_mask = grounded_segmentation(
image=os.path.join(root,file),
labels='a person',
threshold=0.3,
polygon_refinement=True,
detector_id=detector_id,
segmenter_id=segmenter_id
)
cv2.imwrite(f"{os.path.join(mask_save_path, file).replace('.jpg', '_mask.jpg')}", GSAM_mask)