-
Notifications
You must be signed in to change notification settings - Fork 1
/
opencv.py
88 lines (58 loc) · 2.26 KB
/
opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import cv2
import numpy as np
from keras.models import load_model
from skimage.transform import resize, pyramid_reduce
model = load_model('model.h5')
def get_square(image, square_size):
height, width = image.shape
if(height > width):
differ = height
else:
differ = width
differ += 4
mask = np.zeros((differ, differ), dtype = "uint8")
x_pos = int((differ - width) / 2)
y_pos = int((differ - height) / 2)
mask[y_pos: y_pos + height, x_pos: x_pos + width] = image[0: height, 0: width]
if differ / square_size > 1:
mask = pyramid_reduce(mask, differ / square_size)
else:
mask = cv2.resize(mask, (square_size, square_size), interpolation = cv2.INTER_AREA)
return mask
def keras_predict(model, image):
data = np.asarray( image, dtype="int32" )
pred_probab = model.predict(data)[0]
pred_class = list(pred_probab).index(max(pred_probab))
return max(pred_probab), pred_class
def keras_process_image(img):
image_x = 28
image_y = 28
#img = cv2.resize(img, (28,28), interpolation = cv2.INTER_AREA)
img = get_square(img, 28)
img = np.reshape(img, (image_x, image_y))
return img
def crop_image(image, x, y, width, height):
return image[y:y + height, x:x + width]
while True:
cam_capture = cv2.VideoCapture(0)
_, image_frame = cam_capture.read()
# Select ROI
im2 = crop_image(image_frame, 300,300,300,300)
image_grayscale = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY)
image_grayscale_blurred = cv2.GaussianBlur(image_grayscale, (15,15), 0)
#resized_img = image_resize(image_grayscale_blurred, width = 28, height = 28, inter = cv2.INTER_AREA)
#resized_img = keras_process_image(image_grayscale_blurred)
resized_img = cv2.resize(image_grayscale_blurred,(28,28))
#ar = np.array(resized_img)
ar = resized_img.reshape(1,784)
pred_probab, pred_class = keras_predict(model, ar )
print(pred_class, pred_probab)
# Display cropped image
cv2.imshow("Image2",im2)
cv2.imshow("Image4",resized_img)
cv2.imshow("Image3",image_grayscale_blurred)
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
cam_capture.release()
cv2.destroyAllWindows()