-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
executable file
·233 lines (185 loc) · 7.41 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#! /usr/bin/env python3
# author : S. Mandalia
# shivesh.mandalia@outlook.com
#
# date : March 19, 2020
"""
Exotic options by Monte Carlo.
B.7 Project 5 from Mark Joshi's "The Concepts and practice of mathematical
finance", published by Cambridge University Press.
"""
import random
from typing import List
from utils.engine import PricingEngine
from utils.path import PathGenerator
from utils.payoff import AsianArithmeticPayOff, DiscreteBarrierPayOff
from utils.payoff import VanillaPayOff
__all__ = ['asian_options', 'discrete_barrier']
def asian_options(ntrials_arr: List[int]) -> None:
"""Pricing Asian options."""
# Having implemented the engine, price the following with
# S0=100, σ=0.1, r=0.05, d=0.03, and strike=103
print('==================')
print('Pricing Asian options')
print('==================')
path = PathGenerator(S=100, r=0.05, div=0.03, vol=0.1)
payoff = AsianArithmeticPayOff(K=103, option_right='Call')
engine = PricingEngine(payoff=payoff, path=path)
# (i) an Asian call option with maturity in one year and monthly setting
# dates.
T = [x / 12 for x in range(12 + 1)]
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(i) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
# (ii) an Asian call option with maturity in one year and three month
# setting dates.
T = [x / 4 for x in range(4 + 1)]
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(ii) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
# (iii) an Asian call option with maturity in one year and weekly setting
# dates.
T = [x / 52 for x in range(52 + 1)]
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(iii) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
print('''How do the prices compare?
We see that Asian options with more frequent setting dates are more expensive.
This is because the averaging is less pronounced with more setting dates,
making the Asian option more volatile.''')
print('==================')
# Vanilla option
T = [0, 1]
engine.payoff = VanillaPayOff(K=103, option_right='Call')
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(vanilla) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
print('''How do the prices compare with a vanilla option?
We see that Asian options are cheaper than vanilla options.
This is because Asian options are less volatile, due to the averaging feature -
the volatility of the averaged price is less volatile than the spot price.''')
print('==================')
print('''How does the speed of convergence vary?
The rate of convergence is faster for sparser date settings, as seen by the
standard error. More dense date settings converge slower as the timing
evolution needs to be simulated. For the same reason, vanilla options converge
the fastest.''')
def discrete_barrier(ntrials_arr: List[int]) -> None:
"""Pricing discrete barrier options."""
# Price some discrete barrier options, all with maturity one year and
# struck at 103.
print('==================')
print('Pricing discrete barrier options')
print('==================')
path = PathGenerator(S=100, r=0.05, div=0.03, vol=0.1)
# (i) a down-and-out call with barrier at 80 and monthly barrier dates.
payoff = DiscreteBarrierPayOff(
K=103, option_right='Call', B=80, barrier_updown='Down',
barrier_inout='Out'
)
engine = PricingEngine(payoff=payoff, path=path)
T = [x / 12 for x in range(12 + 1)]
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(i) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
# (ii) a down-and-in call with barrier at 80 and monthly barrier dates.
engine.path = PathGenerator(S=84, r=0.05, div=0.03, vol=0.1)
engine.payoff = DiscreteBarrierPayOff(
K=103, option_right='Call', B=80, barrier_updown='Down',
barrier_inout='In'
)
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(ii) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
# (iii) a down-and-out put with barrier at 80 and monthly barrier dates.
engine.path = path
engine.payoff = DiscreteBarrierPayOff(
K=103, option_right='Put', B=80, barrier_updown='Down',
barrier_inout='Out'
)
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(iii) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
# (iv) a down-and-out put with barrier at 120 and barrier dates at
# 0.05, 0.15, ..., 0.95
engine.payoff = DiscreteBarrierPayOff(
K=103, option_right='Put', B=120, barrier_updown='Down',
barrier_inout='Out'
)
T = [x / 20 for x in range(20)]
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(iv) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
# Vanilla call option
T = [0, 1]
engine.payoff = VanillaPayOff(K=103, option_right='Call')
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(vanilla call) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
# Vanilla put option
T = [0, 1]
engine.payoff = VanillaPayOff(K=103, option_right='Put')
# Price
for ntrials in ntrials_arr:
result = engine.price(T=T, ntrials=ntrials)
print('(vanilla put) = {0:.4f} +- {1:.4f} with {2} trials'.format(
result.price, result.stderr, int(ntrials)
))
print('==================')
print('''Compare prices and speed of convergence. Also compare prices with
the vanilla option.
Similar to Asian options, the rate of convergence is faster for sparser date
settings. Vanilla options converge the fastest.
Discrete barrier options can be much cheaper than vanilla options. This is
because these type of options offer less flexibility compared to vanilla
options, and thus this is priced in.''')
def main() -> None:
random.seed(1)
# Define number of trials to run
ntrials_arr = list(map(int, [1e4, 1e5, 1e6]))
# Pricing Asian options
asian_options(ntrials_arr)
# Pricing discrete barrier options
discrete_barrier(ntrials_arr)
print('==================')
print('Shivesh Mandalia https://shivesh.org/')
print('==================')
main.__doc__ = __doc__
if __name__ == '__main__':
main()