-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
90 lines (81 loc) · 3.27 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from sklearn.metrics import average_precision_score, roc_auc_score
import numpy as np
from utils import sort_matrix
def metrics(score_matrix, roc_circrna_disease_matrix):
sorted_circrna_disease_matrix, sorted_score_matrix, sort_index = sort_matrix(score_matrix,
roc_circrna_disease_matrix)
tpr_list = []
fpr_list = []
recall_list = []
precision_list = []
accuracy_list = []
F1_list = []
for cutoff in range(sorted_circrna_disease_matrix.shape[0]):
P_matrix = sorted_circrna_disease_matrix[0:cutoff + 1, :]
N_matrix = sorted_circrna_disease_matrix[cutoff + 1:sorted_circrna_disease_matrix.shape[0] + 1, :]
TP = np.sum(P_matrix == 1)
FP = np.sum(P_matrix == 0)
TN = np.sum(N_matrix == 0)
FN = np.sum(N_matrix == 1)
tpr = TP / (TP + FN)
fpr = FP / (FP + TN)
tpr_list.append(tpr)
fpr_list.append(fpr)
recall = TP / (TP + FN)
precision = TP / (TP + FP)
recall_list.append(recall)
precision_list.append(precision)
accuracy = (TN + TP) / (TN + TP + FN + FP)
F1 = (2 * TP) / (2 * TP + FP + FN)
if (2 * TP + FP + FN) == 0:
F1 = 0
F1_list.append(F1)
accuracy_list.append(accuracy)
# Here are the counts of predicted accuracy for top50, top100, and top200
top_list = [50, 100, 200]
for num in top_list:
P_matrix = sorted_circrna_disease_matrix[0:num, :]
N_matrix = sorted_circrna_disease_matrix[num:sorted_circrna_disease_matrix.shape[0] + 1, :]
top_count = np.sum(P_matrix == 1)
# print("top" + str(num) + ": " + str(top_count))
tpr_arr_epoch = np.array(tpr_list)
fpr_arr_epoch = np.array(fpr_list)
recall_arr_epoch = np.array(recall_list)
precision_arr_epoch = np.array(precision_list)
accuracy_arr_epoch = np.array(accuracy_list)
F1_arr_epoch = np.array(F1_list)
auc_epoch = np.trapz(tpr_arr_epoch, fpr_arr_epoch)
aupr_epoch = np.trapz(precision_arr_epoch, recall_arr_epoch)
return tpr_list, fpr_list, recall_list, precision_list, accuracy_list, F1_list
def calculate_performace(y_prob, y_test):
tp = 0
fp = 0
tn = 0
fn = 0
num = len(y_prob)
y_pred = np.where(y_prob >= 0.5, 1., 0.)
for index in range(num):
if y_test[index] == 1:
if y_test[index] == y_pred[index]:
tp = tp + 1
else:
fn = fn + 1
else:
if y_test[index] == y_pred[index]:
tn = tn + 1
else:
fp = fp + 1
acc = float(tp + tn) / num
try:
precision = float(tp) / (tp + fp)
recall = float(tp) / (tp + fn)
f1_score = float((2 * precision * recall) / (precision + recall))
MCC = float(tp * tn - fp * fn) / (np.sqrt(float((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))))
sens = tp / (tp + fn)
spec = tn / (tn + tp)
except ZeroDivisionError:
print("You can't divide by 0.")
precision = recall = f1_score = sens = MCC = spec = 100
AUC = roc_auc_score(y_test, y_prob)
auprc = average_precision_score(y_test, y_prob)
return tp, fp, tn, fn, acc, precision, sens, f1_score, MCC, AUC, auprc, spec