-
Notifications
You must be signed in to change notification settings - Fork 21
/
tesstrain_utils.py
531 lines (454 loc) · 17.4 KB
/
tesstrain_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# (C) Copyright 2014, Google Inc.
# (C) Copyright 2018, James R Barlow
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# For a detailed description of the phases, see
# https://tesseract-ocr.github.io/tessdoc/Training-Tesseract.html.
#
import argparse
import atexit
import concurrent.futures
import logging
import os
import pathlib
import platform
import shutil
import subprocess
import sys
from datetime import date
from operator import itemgetter
from tempfile import TemporaryDirectory, mkdtemp
from tqdm import tqdm
from language_specific import VERTICAL_FONTS
log = logging.getLogger(__name__)
class TrainingArgs(argparse.Namespace):
def __init__(self):
super(TrainingArgs, self).__init__()
self.uname = platform.uname().system.lower()
self.lang_code = "eng"
self.timestamp = str(date.today())
self._font_config_cache = TemporaryDirectory(prefix="font_tmp")
self.font_config_cache = self._font_config_cache.name
self.fonts_dir = (
"/Library/Fonts/" if "darwin" in self.uname else "/usr/share/fonts/"
)
self.max_pages = 0
self.save_box_tiff = False
self.overwrite = False
self.linedata = False
self.run_shape_clustering = False
self.extract_font_properties = True
self.distort_image = False
def __eq__(self, other):
return (argparse.Namespace.__eq__(self, other) and
self.uname == other.uname and self.lang_code == other.lang_code and
self.timestamp == other.timestamp and self.font_config_cache == other.font_config_cache and
self.fonts_dir == other.fonts_dir and self.max_pages == other.max_pages and
self.save_box_tiff == other.save_box_tiff and self.overwrite == other.overwrite and
self.linedata == other.linedata and self.run_shape_clustering == other.run_shape_clustering and
self.extract_font_properties == other.extract_font_properties and
self.distort_image == other.distort_image)
def err_exit(msg):
log.critical(msg)
sys.exit(1)
# Helper function to run a command and append its output to a log. Aborts early
# if the program file is not found.
# Usage: run_command CMD ARG1 ARG2...
def run_command(cmd, *args, env=None):
for d in ("", "api/", "training/"):
testcmd = shutil.which(f"{d}{cmd}")
if shutil.which(testcmd):
cmd = testcmd
break
if not shutil.which(cmd):
err_exit(f"{cmd} not found")
log.debug(f"Running {cmd}")
args = list(args)
for idx, arg in enumerate(args):
log.debug(arg)
# Workaround for https://bugs.python.org/issue33617
# TypeError: argument of type 'WindowsPath' is not iterable
if isinstance(arg, pathlib.WindowsPath):
args[idx] = str(arg)
proc = subprocess.run(
[cmd, *args], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env
)
proclog = logging.getLogger(cmd)
if proc.returncode == 0:
proclog.debug(proc.stdout.decode("utf-8", errors="replace"))
else:
try:
proclog.error(proc.stdout.decode("utf-8", errors="replace"))
except Exception as e:
proclog.error(e)
pass
log.info(f"Program {cmd} failed with return code {proc.returncode}. Abort.")
# Check if all the given files exist, or exit otherwise.
# Used to check required input files and produced output files in each phase.
# Usage: check_file_readable FILE1 FILE2...
def check_file_readable(*filenames):
if isinstance(filenames, (str, pathlib.Path)):
filenames = [filenames]
for filename in filenames:
try:
with pathlib.Path(filename).open():
pass
except FileNotFoundError:
err_exit(f"Required/expected file '{filename}' does not exist")
except PermissionError:
err_exit(f"{filename} is not readable")
except IOError as e:
err_exit(f"{filename} IO Error: {str(e)}")
return True
parser = argparse.ArgumentParser(
epilog="""
The font names specified in --fontlist need to be recognizable by Pango using
fontconfig. An easy way to list the canonical names of all fonts available on
your system is to run text2image with --list_available_fonts and the
appropriate --fonts_dir path.
"""
)
parser.add_argument(
"--fontlist",
dest="fonts",
nargs="+",
type=str,
help="A list of fontnames to train on.",
)
parser.add_argument("--fonts_dir", help="Path to font files.")
parser.add_argument("--tmp_dir", help="Path to temporary training directory.")
parser.add_argument(
"--lang", metavar="LANG_CODE", dest="lang_code", help="ISO 639 code."
)
parser.add_argument(
"--langdata_dir",
metavar="DATADIR",
help="Path to tesseract/training/langdata directory.",
)
parser.add_argument("--maxpages", type=int, dest="max_pages")
parser.add_argument(
"--output_dir", metavar="OUTPUTDIR", help="Location of output traineddata file."
)
parser.add_argument(
"--overwrite", action="store_true", help="Safe to overwrite files in output_dir."
)
parser.add_argument(
"--save_box_tiff",
action="store_true",
help="Save box/tiff pairs along with lstmf files.",
)
parser.add_argument(
"--linedata_only",
dest="linedata",
action="store_true",
help="Only generate training data for lstmtraining.",
)
inputdata_group = parser.add_argument_group(
"inputdata",
"OPTIONAL flags for input data. If unspecified we will look for them in the langdata_dir directory.",
)
inputdata_group.add_argument(
"--training_text", metavar="TEXTFILE", help="Text to render and use for training."
)
inputdata_group.add_argument(
"--wordlist",
dest="wordlist_file",
metavar="WORDFILE",
help="Word list for the language ordered by decreasing frequency.",
)
parser.add_argument("--extract_font_properties", action="store_true")
parser.add_argument(
"--noextract_font_properties", dest="extract_font_properties", action="store_false"
)
parser.add_argument(
"--distort_image", dest="distort_image", action="store_true"
)
tessdata_group = parser.add_argument_group(
"tessdata",
"OPTIONAL flag to specify location of existing traineddata files, required during feature extraction. If unspecified will use TESSDATA_PREFIX defined in the current environment.",
)
tessdata_group.add_argument(
"--tessdata_dir",
metavar="TESSDATADIR",
help="Path to tesseract/tessdata directory.",
)
parser.add_argument(
"--exposures",
metavar="EXPOSURES",
action="append",
nargs="+",
help="A list of exposure levels to use (e.g. -1,0,1).",
)
parser.add_argument(
"--ptsize",
metavar="PT_SIZE",
type=int,
default=12,
help="Size of printed text.",
)
parser.add_argument(
"--ysize",
metavar="Y_SIZE",
type=int,
default=4800,
help="Height of output image.",
)
# Does simple command-line parsing and initialization.
def parse_flags(argv=None):
ctx = TrainingArgs()
log.debug(ctx)
parser.parse_args(args=argv, namespace=ctx)
log.debug(ctx)
if not ctx.lang_code:
err_exit("Need to specify a language --lang")
if not ctx.langdata_dir:
err_exit("Need to specify path to language files --langdata_dir")
if not ctx.tessdata_dir:
tessdata_prefix = os.environ.get("TESSDATA_PREFIX", "")
if not tessdata_prefix:
err_exit(
"Need to specify a --tessdata_dir or have a "
"TESSDATA_PREFIX variable defined in your environment"
)
else:
ctx.tessdata_dir = tessdata_prefix
if not ctx.output_dir:
ctx.output_dir = mkdtemp(prefix=f"trained-{ctx.lang_code}-{ctx.timestamp}")
log.info(f"Output directory set to: {ctx.output_dir}")
# Location where intermediate files will be created.
if not ctx.tmp_dir:
ctx.training_dir = mkdtemp(prefix=f"{ctx.lang_code}-{ctx.timestamp}")
else:
ctx.training_dir = mkdtemp(prefix=f"{ctx.lang_code}-{ctx.timestamp}", dir=ctx.tmp_dir)
# Location of log file for the whole run.
ctx.log_file = pathlib.Path(ctx.training_dir) / "tesstrain.log"
log.info(f"Log file location: {ctx.log_file}")
def show_tmpdir_location(training_dir):
# On successful exit we will delete this first; on failure we want to let the user
# know where the log is
if pathlib.Path(training_dir).exists():
print(f"Temporary files retained at: {training_dir}")
atexit.register(show_tmpdir_location, ctx.training_dir)
# Take training text and wordlist from the langdata directory if not
# specified in the command-line.
if not ctx.training_text:
ctx.training_text = (
pathlib.Path(ctx.langdata_dir) / ctx.lang_code / f"{ctx.lang_code}.training_text"
)
if not ctx.wordlist_file:
ctx.wordlist_file = (
pathlib.Path(ctx.langdata_dir) / ctx.lang_code / f"{ctx.lang_code}.wordlist"
)
ctx.word_bigrams_file = (
pathlib.Path(ctx.langdata_dir) / ctx.lang_code / f"{ctx.lang_code}.word.bigrams"
)
ctx.numbers_file = (
pathlib.Path(ctx.langdata_dir) / ctx.lang_code / f"{ctx.lang_code}.numbers"
)
ctx.punc_file = pathlib.Path(ctx.langdata_dir) / ctx.lang_code / f"{ctx.lang_code}.punc"
ctx.bigram_freqs_file = pathlib.Path(ctx.training_text).with_suffix(
".training_text.bigram_freqs"
)
ctx.unigram_freqs_file = pathlib.Path(ctx.training_text).with_suffix(
".training_text.unigram_freqs"
)
ctx.train_ngrams_file = pathlib.Path(ctx.training_text).with_suffix(
".training_text.train_ngrams"
)
ctx.generate_dawgs = 1
log.debug(ctx)
return ctx
def cleanup(ctx):
shutil.copy(ctx.log_file, ctx.output_dir)
shutil.rmtree(ctx.training_dir)
return
# Function initializes font config with a unique font cache dir.
def initialize_fontconfig(ctx):
sample_path = pathlib.Path(ctx.font_config_cache) / "sample_text.txt"
pathlib.Path(sample_path).write_text("Text\n")
log.info(f"Testing font: {ctx.fonts[0]}")
run_command(
"text2image",
f"--fonts_dir={ctx.fonts_dir}",
f"--font={ctx.fonts[0]}",
f"--outputbase={sample_path}",
f"--text={sample_path}",
f"--fontconfig_tmpdir={ctx.font_config_cache}",
f"--ptsize={ctx.ptsize}",
)
def make_fontname(font):
return font.replace(" ", "_").replace(",", "")
def make_outbase(ctx, fontname, exposure):
return pathlib.Path(ctx.training_dir) / f"{ctx.lang_code}.{fontname}.exp{exposure}"
# Helper function for phaseI_generate_image. Generates the image for a single
# language/font combination. Parallel processing causes fontconfig related errors.
# Do one font at a time.
def generate_font_image(ctx, font, exposure, char_spacing):
log.info(f"Rendering using {font}")
fontname = make_fontname(font)
outbase = make_outbase(ctx, fontname, exposure)
common_args = [
f"--fontconfig_tmpdir={ctx.font_config_cache}",
f"--fonts_dir={ctx.fonts_dir}",
f"--strip_unrenderable_words",
f"--leading={ctx.leading}",
f"--char_spacing={char_spacing}",
f"--exposure={exposure}",
f"--outputbase={outbase}",
f"--max_pages={ctx.max_pages}",
]
if ctx.distort_image:
common_args.append("--distort_image")
common_args.append("--invert=false")
common_args.append("--white_noise=true")
common_args.append("--smooth_noise=false")
common_args.append("--blur=false")
# add --writing_mode=vertical-upright to common_args if the font is
# specified to be rendered vertically.
if font in VERTICAL_FONTS:
common_args.append("--writing_mode=vertical-upright")
run_command(
"text2image",
*common_args,
f"--font={font}",
f"--text={ctx.training_text}",
f"--ptsize={ctx.ptsize}",
f"--ysize={ctx.ysize}",
*ctx.text2image_extra_args,
)
return f"{font}-{exposure}"
# Phase I : Generate (I)mages from training text for each font.
def phase_I_generate_image(ctx, par_factor=None):
if not par_factor or par_factor <= 0:
par_factor = 1
log.info("=== Phase I: Generating training images ===")
check_file_readable(ctx.training_text)
char_spacing = 0.0
for exposure in ctx.exposures:
with tqdm(
total=len(ctx.fonts)
) as pbar, concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
futures = [
executor.submit(generate_font_image, ctx, font, exposure, char_spacing)
for font in ctx.fonts
]
for future in concurrent.futures.as_completed(futures):
pbar.update(1)
return
# Phase UP : Generate (U)nicharset and (P)roperties file.
def phase_UP_generate_unicharset(ctx):
log.info("=== Phase UP: Generating unicharset and unichar properties files ===")
ctx.unicharset_file = pathlib.Path(ctx.training_dir) / f"{ctx.lang_code}.unicharset"
# create unicharset based on the complete training_text (not box files or groundtruth files).
run_command(
"unicharset_extractor",
"--output_unicharset",
f"{ctx.unicharset_file}",
"--norm_mode",
f"{ctx.norm_mode}",
f"{ctx.training_text}",
)
check_file_readable(ctx.unicharset_file)
ctx.xheights_file = pathlib.Path(ctx.training_dir) / f"{ctx.lang_code}.xheights"
run_command(
"set_unicharset_properties",
"-U",
f"{ctx.unicharset_file}",
"-O",
f"{ctx.unicharset_file}",
"-X",
f"{ctx.xheights_file}",
f"--script_dir={ctx.langdata_dir}",
)
check_file_readable(ctx.xheights_file)
# Phase E : (E)xtract .lstmf files from .tif/.box files
def phase_E_extract_features(ctx, box_config, ext):
log.info(f"=== Phase E: Generating {ext} files using {box_config}===")
box_files = list(pathlib.Path(ctx.training_dir).glob("*.exp*.box"))
log.debug(box_files)
# Use any available language-specific configs.
config = ""
testconfig = pathlib.Path(ctx.langdata_dir) / ctx.lang_code / f"{ctx.lang_code}.config"
if testconfig.exists():
config = testconfig
log.info(f"Using {ctx.lang_code}.config")
tessdata_environ = os.environ.copy()
tessdata_environ["TESSDATA_PREFIX"] = str(ctx.tessdata_dir)
log.info(f"Using TESSDATA_PREFIX={tessdata_environ['TESSDATA_PREFIX']}")
with tqdm(total=len(box_files)) as pbar, concurrent.futures.ThreadPoolExecutor(
max_workers=2
) as executor:
futures = []
for box_file in box_files:
future = executor.submit(
run_command,
"tesseract",
pathlib.Path(box_file).with_suffix(".tif"),
pathlib.Path(box_file).with_suffix(""),
*box_config,
config,
env=tessdata_environ,
)
futures.append(future)
for future in concurrent.futures.as_completed(futures):
try:
future.result()
except Exception as exc:
err_exit("Failed while generating lstmf files: " + str(exc))
else:
pbar.update(1)
return
def make_lstmdata(ctx):
log.info("=== Constructing LSTM training data ===")
lang_prefix = f"{ctx.langdata_dir}/{ctx.lang_code}/{ctx.lang_code}"
path_output = pathlib.Path(ctx.output_dir)
if not path_output.is_dir():
log.info(f"Creating new directory {ctx.output_dir}")
path_output.mkdir(exist_ok=True, parents=True)
args = []
if ctx.lang_is_rtl:
args.append("--lang_is_rtl")
if ctx.norm_mode >= 2:
args.append("--pass_through_recoder")
# Build the starter traineddata from the inputs.
run_command(
"combine_lang_model",
"--input_unicharset",
f"{ctx.training_dir}/{ctx.lang_code}.unicharset",
"--script_dir",
f"{ctx.langdata_dir}",
"--words",
f"{lang_prefix}.wordlist",
"--numbers",
f"{lang_prefix}.numbers",
"--puncs",
f"{lang_prefix}.punc",
"--output_dir",
f"{ctx.output_dir}",
"--lang",
f"{ctx.lang_code}",
*args,
)
def get_file_list():
training_path = pathlib.Path(ctx.training_dir)
if ctx.save_box_tiff:
log.info("=== Saving box/tiff pairs for training data ===")
yield from training_path.glob(f"{ctx.lang_code}*.box")
yield from training_path.glob(f"{ctx.lang_code}*.tif")
log.info("=== Moving lstmf files for training data ===")
yield from training_path.glob(f"{ctx.lang_code}.*.lstmf")
for f in get_file_list():
log.debug(f"Moving {f} to {path_output / f.name}")
shutil.move(str(f), path_output / f.name)
lstm_list = f"{ctx.output_dir}/{ctx.lang_code}.training_files.txt"
dir_listing = (str(p) for p in path_output.glob(f"{ctx.lang_code}.*.lstmf"))
with pathlib.Path(lstm_list).open(mode="w", encoding="utf-8", newline="\n") as f:
f.write("\n".join(dir_listing))